
CouchApp Documentation
Release 1.1.0

Various CouchApp Contributors

Jun 03, 2017

Contents

1 Overview 3
1.1 Introduction . 3

2 Getting Started 11
2.1 Installation . 11
2.2 Getting Started . 13

3 User Guide 19
3.1 CouchApp Command Line Tool . 19
3.2 JavaScript Application Programming . 31
3.3 The Garden . 32
3.4 CouchApps and DesktopCouch . 32
3.5 List of CouchApps . 33

4 Design 41
4.1 The CouchApp Filesystem Mapping . 41

5 Contributing to CouchApp Ecosystem 45
5.1 Contributing . 45
5.2 Roadmap . 46

6 Other Resources 47

i

ii

CouchApp Documentation, Release 1.1.0

Note: This documentation is a work in progress. Contribution welcomed.

Contents 1

CouchApp Documentation, Release 1.1.0

2 Contents

CHAPTER 1

Overview

We will introduce the main concepts of CouchApp here.

Introduction

CouchApps are JavaScript and HTML5 applications served directly from CouchDB. If you can fit your application
into those constraints, then you get CouchDB’s scalability and flexibility for free (and deploying your app is as simple
as replicating it to the production server).

There are also tools for deploying browser-based apps to JSON web servers and PouchDB is the future of browser
based sync apps. It can sync with the same sync protocols but uses the built-in storage of HTML5.

What is CouchApp?

Note: This article came from a blog post by @jchris. Some contents are out-of-date. We need your contribution!

The Basics

A CouchApp is just a JavaScript and HTML5 app that can be served directly to the browser from CouchDB, without
any other software in the stack. There are many benefits (and some constraints) to doing it this way. The first section
of this article will address these tradeoffs.

In the bad old days (2008 and earlier), if you wanted to write a dynamic database-backed web application, you had to
have an architecture that looked like a layer cake:

Browser (UI and links between pages)
------------------------ HTTP -------------------------
Application server (business logic, templates, etc)

3

http://pouchdb.com/

CouchApp Documentation, Release 1.1.0

------------------- custom binary ---------------------
Persistence: MySQL, PostgreSQL, Oracle

In fact, the bad old days are still with us, as most applications still rely on fragile custom code, running in an application
server like Ruby on Rails, Python’s Django, or some kinda Java thing. The pain-points of the 3 tier architecture are well
known: application developers must understand the concept of shared-nothing state, or else clients can see inconsistent
results if they are load balanced across a cluster of app servers. The application server is usually a memory hog. And at
the end of the day, when you’ve finally gotten the app layer to horizontal scalability, it turns our that your database-tier
has fatal scalability flaws...

CouchDB is an HTTP server, capable of serving HTML directly to the browser. It is also a database designed from
the ground up for horizontal scalability. Did I say silver bullet? ;) (Of course it is not a silver bullet – if you can’t
fit your app into CouchDB’s constraints, you’ll still have scaling issues.) If you can build your app with the grain of
CouchDB’s APIs, then you can piggyback on all the work other people have done to scale.

The fact is, 2-layer applications are simpler:

Browser (UI and links between pages)
------------------------ HTTP -------------------------
CouchDB (persistence, business logic, and templating)

Because CouchDB is a web server, you can serve applications directly the browser without any middle tier. When I’m
feeling punchy, I like to call the traditional application server stack “extra code to make CouchDB uglier and slower.”

Aside from simplicity and the scalability that comes with it, there is another major benefit to creating a 100% pure
CouchApp: Replication. When your app is hosted by just a CouchDB, that means it can be run from any CouchDB,
with no need to set up complex server-side dependencies. When your app can run on any CouchDB, you are free to
take advantage of CouchDB’s killer feature: replicating the app and the data anywhere on the network.

Have you ever been frustrated by a slow website? Filling out forms and waiting even a few seconds for the response
can be infuriating. Many users will hit the submit button over and over again, compounding whatever performance
issues that are effecting them, while introducing data integrity issues as well. Google, Facebook, and other large
competitive web properies know that perceived latency drives user engagement like nothing else, and they invest huge
sums to make their sites seem faster.

Your site can be faster than theirs, if you serve it from localhost. CouchDB makes this possible. Here are installers for
OSX, Windows, and Linux and you can install CouchDB on Android here.

The take-home message from this section is: CouchDB can scale. If your app is served by raw CouchDB, it can scale
just the same. Also, there’s no server faster than the server running on your local device. And fast is what matters for
users.

In the next section we’ll see what it takes to get your app to be served directly from CouchDB, and what you can (and
can’t) do.

CouchDB’s built-in programming model

The CouchDB API is full featured and applicable to a lot of use cases. We can’t possible go in-depth here. Instead
we’ll focus only on the broad outline, and on what is useful and necessary for CouchApps. If you want to learn more,
check out the CouchDB wiki or the free CouchDB book.

The first thing to understand about CouchDB is that the entire API is HTTP. Data is stored and retrieved using the
protocol your browser is good at. Even the CouchDB test suite is written in JavaScript and executed from the browser.
It’s all just HTTP.

4 Chapter 1. Overview

http://enda.squarespace.com/tech/2010/3/4/couchdb-at-scale-4-billion-requests-so-far.html
http://wiki.apache.org/couchdb/Replication
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx
http://couch.io/get
http://couch.io/get
http://couch.io/android
http://wiki.apache.org/couchdb
http://books.couchdb.org/
http://jchris.couchone.com/_utils/couch_tests.html?script/couch_tests.js

CouchApp Documentation, Release 1.1.0

HTML Attachments

A common question I get from people starting to write Ajax apps using CouchDB, is “when I try to query the CouchDB
with jQuery, it doesn’t work.” Usually it turns out that they have an index.html file on their filesystem, which is
attempting to do an Ajax call against the CouchDB server. After I explain to them the same origin security policy, they
start to understand this this means CouchDB needs to serve their HTML (rather than loading it in the browser direct
from the filesystem).

CouchDB documents may have binary attachments. The easiest way to add an attachment to a document is via Futon.
We’ll do that later in this blog post.

So, the simplest possible CouchApp is just an HTML file, served directly from CouchDB, that uses Ajax to load and
save data from the CouchDB.

Map Reduce queries

What sets CouchDB apart from a simple key value store like Memcached or Amazon S3, is that you can query it by
building indexes across the stored objects. You do this by writing JavaScript functions that are passed each of your
documents, and can pick from them a set of keys under which you’d like to locate them.

So for a blog post, you might pick out all the tags, and make keys like [tag, doc.created_at]. Once you have
a view like that, you can easily get a view of all your blog posts with a given tag, in chronological order, no less. By
adding the reduce operator _count you can also see how many blog posts are tagged foo or whatever.

I’m not gonna try to teach you all about views here. Try the CouchDB book’s guide to views , the wiki and this chapter
on advanced views.

Server Side Validations

The second thing people usually ask when they start to grok the CouchApp model, is “How do I keep people from
destroying all my data? How do I ensure they only do what they are allowed to do?” The answer to that is validation
functions. In a nutshell, each time someone saves or updates a CouchDB document, it is passed to your validation
function, which has the option to throw an error. It can either throw {"forbidden" : "no matter what"}
or {"unauthorized" : "maybe if you login as someone else"} where, of course, you are free
to craft your own messages. If the function doesn’t have any errors, the save is allowed to proceed.

Rendering Dynamic HTML

After a new user understands validation functions, they have begun to see that perhaps CouchDB / CouchApps is a
good candidate for their application. But maybe something is missing... Search engines don’t treat Ajax applications
with the same respect they do static HTML applications. Also, a fair proportion of users have JavaScript disabled, or
are using a screen-reader type application, which may not understand Ajax.

These are all great reasons your application should ship the basic content of a page as real-deal HTML. Luckily,
CouchDB has an answer to that as well.

Show functions allow you to transform a document GET from JSON into the format of your choice. On this wiki
application the main wiki content is rendered as server-side HTML, using a show function. You can also use a show
function to provide an XML, CSV, or even PNG version of your original document. Some folks also use it to filter
security-sensitive fields from a JSON document, so that only public data is available to end- users.

List functions are the analog of show functions, but for view results. A view result is just a long list of JSON rows. A
list function transforms those rows to other formats. Here is the JSON view of recent posts on my blog, and here is the
HTML page that results from running that same view through a list function.

1.1. Introduction 5

http://en.wikipedia.org/wiki/Same_origin_policy
http://stackoverflow.com/questions/1439371/creating-a-couchdb-standalone-attachment-using-curl
http://aws.amazon.com/s3/
http://books.couchdb.org/relax/design-documents/views
http://wiki.apache.org/couchdb/HTTP_view_API
http://books.couchdb.org/relax/reference/views-for-sql-jockeys
http://books.couchdb.org/relax/reference/views-for-sql-jockeys
http://books.couchdb.org/relax/design-documents/validation-functions
http://books.couchdb.org/relax/design-documents/validation-functions
http://books.couchdb.org/relax/design-documents/shows
http://pages.jchris.couchone.com/page/donk
http://pages.jchris.couchone.com/page/donk
http://books.couchdb.org/relax/design-documents/lists
http://jchrisa.net/drl/_design/sofa/_view/recent-posts?descending=true&limit=5
http://jchrisa.net/drl/_design/sofa/_list/index/recent-posts?descending=true&limit=5
http://jchrisa.net/drl/_design/sofa/_list/index/recent-posts?descending=true&limit=5

CouchApp Documentation, Release 1.1.0

We added these capabilities to CouchDB because we knew that without the ability to serve plain-old HTML, we
wouldn’t be completely RESTful.

Rounding out this group, is the ability to accept plain HTML form POSTs. (And other arbitary input). For that,
CouchDB uses update functions, which can take arbitrary input and turn it in to JSON for saving to the database.

Pretty URLs

“All well and good”, you may say, “but I can’t really suggest to my clients that their website should have URLs like:

http://jchrisa.net/drl/_design/sofa/_list/index/recent-posts?descending=true&limit=5

I used to respond with skepicism to such claims, like a total moaf. But I’ve mended my ways, and seen the light. It
also didn’t hurt that Benoit committed an awesome rewriter to CouchDB, so we can provide nice pretty URLs like
/posts/recent instead of the above mess.

Realtime Updates

Lastly, something folks don’t usually ask for, but which is insanely useful: realtime notification about changes to the
database. Essentially, CouchDB keeps a record of the order in which operations were applied to a given database. This
way, you can always ask it “what’s happened since the last time I asked?”

CouchDB implements this with the _changes feed, a JSON HTTP response, which sends a single line, whenever
something happens to the database. Since CouchDB is implemented in Erlang, it is not expensive for it to hold open
tens of thousands of concurrent connections.

The _changes feed can be used to power realtime updates to a browser UI. For instance, this chat room updates in
realtime whenever a new message is created.

The _changes feed is integral to CouchDB itself (not just a bolted on feature), as it is used to power to replication
itself. The replicator listens to the changes feed of the source database, and writes changes to the target database. This
is what allows CouchDB to keep 2 database in sync in near realtime.

You can also use _changes to drive asynchronous business logic. There will be a webcast in August on this topic,
as well as a blog post with more details, from Couchio’s Jason Smith.

Filtered replication

One last part of the programming model. You can write a JavaScript function that decides whether to include a given
change in the _changes feed. The possibilities are endless. See Jan’s blog post on new replication features for some
interesting use-cases that might stimulate your imagination.

Hello World

Now that I’ve described the theory of CouchApps to you, let’s dig into the practice. Before we get into the expert
toolchain, let’s see what we can do with a little bit of HTML. I’ll assume you have a CouchDB running at localhost.
If you don’t, install one now (or signup for hosting at Iris Couch or Cloudant).

Quick, create a file called index.html, and put this in it:

<!DOCTYPE html>
<html>
<head><title>Tiny CouchApp</title></head>
<body>

6 Chapter 1. Overview

http://twitter.com/benoitc
http://blog.couchbase.com/what%E2%80%99s-new-apache-couchdb-011-%E2%80%94-part-one-nice-urls-rewrite-rules-and-virtual-hosts
http://guide.couchdb.org/draft/notifications.html
http://guide.couchdb.org/draft/notifications.html
http://couchapp.org/example/_design/example/index.html
http://twitter.com/_jhs
http://blog.couch.io/post/468392274/whats-new-in-apache-couchdb-0-11-part-three-new
http://www.iriscouch.com/
http://cloudant.com/

CouchApp Documentation, Release 1.1.0

<h1>Tiny CouchApp</h1>
<ul id="databases">

</body>
<script src="/_utils/script/jquery.js"></script>
<script src="/_utils/script/jquery.couch.js"></script>
<script>
$.couch.allDbs({

success : function(dbs) {
dbs.forEach(function(db) {

$("#databases").append(''+db+'</
→˓a>');

});
}

});

</script>
</html>

Now browse to your CouchDB’s Futon at http://localhost:5984/_utils and create a database called whatever. Now
visit that database, and create a document. You will be creating what is known as a, Design Document, which is a
special kind of document in CouchDB that contains application code. The only thing you need to know now is to set the
document id to something that begins with _design/ and save it. Now click the button labeled Upload Attachment
and choose the index.html file you just created, and upload it. Now click the link in Futon for index.html, and
you should see a list of the databases on that CouchDB instance.

(rengel, 2012-09-05: Because of the Same Origin policy the index.html file has to be in the same directory, or a
subdirectory thereof, as your whatever database.)

You gotta admit there was nothing to that.

Make it easy it with the CouchApp toolchain

Now that we’ve seen how you can build a basic CouchApp with the same set of tools you’d use to do plain-old HTML,
CSS, and JavaScript development, let’s learn how the experts (and the lazy!) do it.

Uploading each changed file to CouchDB via Futon would get tedious quick. Alternatively, you could download the
entire design document as JSON, and edit that JSON in your editor... but keeping track of proper JSON escaping and
formattng is a task better done by a machine.

Back in the early days of CouchDB, I solved this problem with a Ruby script that would update my map and re-
duce function from a folder. This way I could open the folder in TextMate, and get all the proper JavaScript syntax
highlighting. To deploy the changes I’d run the Ruby script, and CouchDB would have my new Map Reduce views.

That would have been the end of the story, except that for some reason, many people had boatloads of trouble installing
the Ruby script. I may have been suffering from a bit of “grass is always greener,” because my reaction was to port
the Ruby stuff to Python (with a little help from my friends), which I thought would have a cleaner install story. (It
almost does!)

Since then the Python CouchApp script has grown in capability. It boasts the ability to push edits in real time, import
vendor modules, and more. Benoit Chesneau keeps it up to date pretty agressively, it just got some GeoCouch features
today.

So let’s use it!

1.1. Introduction 7

http://localhost:5984/_utils
http://github.com/couchapp/couchapp/
http://groups.google.com/group/couchapp/browse_thread/thread/67ccbdcdf9023106
http://github.com/couchapp/couchapp/commit/9ff4ec09664a286f0c408ac76eb9c5589a56e208
http://github.com/couchapp/couchapp/commit/9ff4ec09664a286f0c408ac76eb9c5589a56e208

CouchApp Documentation, Release 1.1.0

Installing couchapp.py

There is a lot of documentation already out there about how to install the CouchApp toolchain. I’ll just link to it. The
basic installation instructions are in the README and in the CouchDB Book

Here are some hints about installing on Windows.

Once you have CouchApp installed, the basic usage is simple. From within your application directory, issue the
following command.

couchapp push . http://myname:mypass@localhost:5984/mydb

Replace myname and mypass with those you set up on your CouchDB using Futon. If you didn’t setup an admin
password on Futon, you should do that – until you do, your CouchDB can be administered by anyone. Also, if you
are running a CouchDB in the cloud, you’ll need to replace localhost:5984 with something like mycouch.
couchone.com. Also, of course, mydb should be changed to the name of the database you want your program to
live in.

All this is coverered in great detail in the CouchApp README and the book, as linked above.

The Standard Library

We’ve made it nearly to the end of this post. The last thing to cover are the various JavaScript libraries for making
CouchApps. I won’t try to document them, just name them, and say a little about their purpose.

I have a mental plan to clean up and consolidate some of these libraries, so they are more modular. This should make
it so that CouchApp code loads faster, among other things.

The jQuery CouchDB Client API

We already used jquery.couch.js in the Tiny CouchApp example HTML above. This is the basic CouchDB library for
jQuery. It handles things like saveDoc and openDoc, view queries, replication requests, etc. Essentially it wraps the
CouchDB API in Ajaxy goodness. This library ships as part of CouchDB, as it is used by Futon.

The CouchApp Code Loader

The CouchApp toolchain ships with jquery.couch.app.js, which is tasked with one job – loading your application code
into the page. This CouchApp jQuery plugin loads your design document (the JSON saved as a result of a couchapp
push command), so that the browser has access to your view definitions, show and list functions, etc. It is invoked
like so:

$.couch.app(function(app){
// app.db is your jquery.couch.js object
// app.require("lib/foo") gives you access to libraries

});

Essentially, all this function does, is inspect the page you are on, determine how to load the design document, load it,
and gives you an object that references it and allows you to require libraries from it. (There is some legacy featuritis
in there, but I’m working to remove that.)

Examples

There is a List of CouchApps.

8 Chapter 1. Overview

http://github.com/couchapp/couchapp
http://guide.couchdb.org/draft/managing.html
http://wiki.apache.org/couchdb/Quirks_on_Windows
http://daleharvey.github.com/jquery.couch.js-docs/symbols/index.html
http://github.com/couchapp/couchapp/blob/master/vendor/_attachments/jquery.couch.app.js

CouchApp Documentation, Release 1.1.0

CouchApp Development Tools

To develop a CouchApp, you will need a way to get your javascript, html and other resources onto your CouchDB
instance. Typically this is done with a CouchApp command line tool that maps application assets and CouchDB views,
lists, shows, etc into one or more Design Documents.

• The CouchApp Filesystem Mapping - couchapp.py and erica (mentioned below) implement a consistent
filesystem-to-design-document mapping

Note: The original CouchApp command line tools were created in 2008 / 2009 by @benoitc and @jchris. They still
work, and have been feature complete for a long time. couchapp has been replaced and is compatible with the old
couchapp tool.

cURL

The simplest way to develop a couchapp would be to use curl from the command line.

CouchApp command line tool

The CouchApp command line tool is used to generate code templates in your application and to push your changes to
an instance of CouchDB, among other things. Here is how to get started with the CouchApp command line tool:

• Installing couchapp

• Couchapp configuration

• The couchapp command line tool

• Extending the couchapp command line tool

• Using couchapp with multiple design documents

Note: There can be confusion with the term CouchApp because it can refer to this tool, named CouchApp, or a general
application served from CouchDB. This is probably due to the fact that the CouchApp command line tool, as known
as couchapp.py , was the first full way of developing a CouchApp.

node.couchapp.js

• http://japhr.blogspot.com/2010/04/quick-intro-to-nodecouchappjs.html

This is an alternative tooling to the Python couchapp utility that is instead written in Node.js. It uses a much simpler
folder structure than it’s Python counterpart and is a generally more minimalist/simplified way of writing couchapps.
Note that you cannot use Python couchapp to push couchapps written using node.couchapp.js into CouchDB and vice
versa.

erica

erica is an Erlang-based command line tool that is compatible with the Python and Node.js CouchApp tools.

1.1. Introduction 9

https://github.com/benoitc/erica
http://japhr.blogspot.com/2010/04/quick-intro-to-nodecouchappjs.html
https://github.com/mikeal/node.couchapp.js
https://github.com/benoitc/erica

CouchApp Documentation, Release 1.1.0

Kanso

A comprehensive, framework-agnostic build tool for CouchApps.

The Kanso command line tool can build projects designed for node.couchapp.js, or even the Python couchapp tool,
while providing many other options for building your app. These build steps and other code can be shared using the
online package repository. Compiling coffee-script, .less CSS templates etc. is as easy as including the relevant
package.

NPM for CouchApps

Kanso also lets you merge design docs together, which allows reusable components built with any of the available
couchapp tools. The Kanso tool can help you manage dependencies and share code between projects, as well as
providing a library of JavaScript modules for use with CouchDB.

soca

soca is a command line tool written in ruby for building and pushing couchapps. It is similar to the canonical couchapp
python tool, with a number of key differences:

• local directories do not have to map 1-1 to the design docs directory

• lifecycle management & deployment hooks for easily adding or modifying the design document with ruby tools
or plugins.

• architected around using Sammy.js, instead of Evently, which is bundled with the python tool. Sammy.js is a
Sinatra inspired browser-side RESTframework which is used by default.

Unlike a traditional couchapp, a soca couchapp is one way - your source directory structure is actually ‘compiled’ into
into the couchapp _design document format.

Compile time plugins:

• Compass

• CoffeeScript

• Mustache

• JavaScript bundling for CouchDB and the browser

Reupholster

Reupholster is geared for CouchApp beginners and simple CouchApps. What Reupholster does is allows you to
experience writing a CouchApp as fast as possible, with very little learning curve. It just feels like you are editing a
normal web project.

10 Chapter 1. Overview

http://kan.so/
http://kan.so/packages
http://kan.so/
http://kan.so/
https://github.com/quirkey/soca
https://github.com/quirkey/soca
http://reupholster.iriscouch.com/reupholster/_design/app/index.html
http://reupholster.iriscouch.com/reupholster/_design/app/index.html

CHAPTER 2

Getting Started

Let’s get started with the couchapp.py command line tools.

Installation

The newest install instructions are always in the README

In case the below is not updated, check out the release section in GitHub.

Requirements

• Python 2.x >= 2.6 (Python 3.x will be supported soon)

• the header files of the Python version that is used, which are included e.g. in the according development package
python-dev (may have a different name depending on your system)

Installing on all UNIXs

To install couchapp using pip you must make sure you have a recent version of pip installed:

$ curl -O https://bootstrap.pypa.io/get-pip.py
$ sudo python get-pip.py

To install or upgrade to the latest released version of couchapp:

$ sudo pip install couchapp
$ sudo pip install --upgrade couchapp

To install/upgrade development version:

$ sudo pip install git+https://github.com/couchapp/couchapp.git

11

https://github.com/couchapp/couchapp/blob/master/README.rst
https://github.com/couchapp/couchapp/releases

CouchApp Documentation, Release 1.1.0

Installing in a sandboxed environment

If you want to work in a sandboxed environment, which is recommended if you don’t want to pollute your system,
you can use virtualenv

$ curl -O https://bootstrap.pypa.io/get-pip.py
$ sudo python get-pip.py
$ sudo pip install virtualenv

To create a sandboxed environment in couchapp_env folder, activate and work in this environment:

$ cd /where/the/sandbox/live
$ virtualenv couchapp_env
$ source couchapp_env/bin/activate

Then to install couchapp:

$ pip install couchapp

Then you can work on your CouchApps. I usually have a couchapps folder in couchapp_env where I put my
couchapps.

Installing on Mac OS X

Warning: This section is out-of-date. We need you help for testing on newer OSX with newer couchapp.py

Using CouchApp Standalone executable

Download couchapp-1.0.0-macosx.zip on Github then double-click on the installer.

Using Homebrew

To install easily couchapp on Mac OS X, it may be easier to use Homebrew to install pip.

Once you installed Homebrew, issue brew search pip and will get following message:

Homebrew provides pip via: brew install python. However you will then have two Pythons installed on
your Mac, so alternatively you can install pip via the instructions at: https://pip.readthedocs.io/en/stable/
instal

I will recommend that just install python from Homebrew, because you will usually get a newer version of python
than system base’s:

$ brew install python

And let’s check the installation of python:

$ where python
/usr/local/bin/python
/usr/bin/python

$ where pip
/usr/local/bin/pip

12 Chapter 2. Getting Started

http://pypi.python.org/pypi/virtualenv
https://github.com/downloads/couchapp/couchapp/couchapp-1.0.0-macosx.zip
http://github.com/
http://brew.sh/
http://brew.sh/
https://pip.readthedocs.io/en/stable/instal
https://pip.readthedocs.io/en/stable/instal
http://brew.sh/

CouchApp Documentation, Release 1.1.0

The path prefixed with /usr/local/ is from Homebrew. Everythings look fine, and issue:

$ pip install couchapp

pip will install packages into ~/Library/Python/2.7/lib/python/site-packages usually. Also you
can verify the location via:

$ pip show --files couchapp

Now, the executable is here:

~/Library/Python/2.7/bin/couchapp

Don’t forget to add ~/Library/Python/2.7/bin to your PATH. There is more discussion about installation on
macOS, please checkout issue 240 for more information.

Installing on Debian/Ubuntu

There is a package in Debian repository. Thanks to @gfa!

sudo apt-get update
sudo apt-get install couchapp

Installing on Windows

There are currently 2 methods to install on windows:

• Standalone Executable 1.0.2 Does not require Python

• Python installer for Python 2.7 Requires Python

Previous Release

Please check out both release section and download section in GitHub.

Note that the download section in GitHub is deprecated.

Getting Started

In this tutorial you will learn how to create your first CouchApp (embedded applications in CouchDB) using the
couchapp script.

Init your application

couchapp provides you the init command to initialize your first CouchApp. It will create an application skeleton
by generating needed folders and files to start. Run:

$ couchapp init helloworld

2.2. Getting Started 13

http://brew.sh/
https://github.com/couchapp/couchapp/pull/240
https://github.com/gfa
https://github.com/couchapp/couchapp/releases/download/1.0.2/couchapp-1.0.2-win32.exe
https://github.com/couchapp/couchapp/releases
https://github.com/couchapp/couchapp/downloads
https://github.com/blog/1302-goodbye-uploads
http://couchdb.apache.org

CouchApp Documentation, Release 1.1.0

Add Some Web Pages

Now we are going to add a index page for our CouchApp. So we can place the index.html under _attachments.
CouchDB can directly serve our attachments as static files.

An example of index.html is here:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CouchApp</title>

</head>
<body>
<h1>Hello CouchApp!</h1>

</body>
</html>

14 Chapter 2. Getting Started

http://couchdb.apache.org

CouchApp Documentation, Release 1.1.0

Push your CouchApp

Now that we have created our basic application, it’s time to push it to our CouchDB server. Our CouchDB server is
at the url http://127.0.0.1:5984 and we want to push our app in the database testdb:

$ couchapp push testdb

2.2. Getting Started 15

http://couchdb.apache.org
http://couchdb.apache.org
http://127.0.0.1:5984

CouchApp Documentation, Release 1.1.0

$ couchapp push

Go on http://127.0.0.1:5984/testdb/_design/helloworld/index.html, you will see:

Try out Design Functions

Now we already make CouchDB serve our static files successfully. What’s next? We need to run server side script!

Let’s try out this attractive feature of CouchDB, Design Functions. The following section will demo the show function.

Create a show function

To display our hello we will create a show function.

16 Chapter 2. Getting Started

http://127.0.0.1:5984/testdb/_design/helloworld/index.html
http://couchdb.apache.org
http://docs.couchdb.org/en/latest/couchapp/ddocs.html

CouchApp Documentation, Release 1.1.0

$ cd helloworld/
$ couchapp generate show hello

Here the generate command create a file named hello.js in the folder shows. The content of this file is:

function(doc, req) {

}

which is default template for show functions.

For now we only want to display the string “Hello World”. Edit your show function like this:

function(doc, req) {
return "Hello Show Func";

}

After we edit those files, we need to push it again:

$ couchapp push testdb

Finally, check it on our browser.

http://127.0.0.1:5984/testdb/_design/helloworld/_show/hello
The full doc of show function is here. Enjoy it!

Clone your CouchApp

So your friend just pushed the helloworld app from his computer. But you want to edit the CouchApp on your own
computer. That’s easy, just clone his application:

$ couchapp clone http://127.0.0.1:5984/testdb/_design/helloworld helloworld

This command fetch the CouchApp helloworld from the remote database of your friend.

Now you can edit the couchapp on your own computer.

• External Resources

– The Standalone Applications and Managing Design Documents chapters of the O’Reilly CouchDB book

2.2. Getting Started 17

http://127.0.0.1:5984/testdb/_design/helloworld/_show/hello
http://docs.couchdb.org/en/latest/couchapp/ddocs.html#show-functions
http://guide.couchdb.org/draft/standalone.html
http://guide.couchdb.org/draft/managing.html

CouchApp Documentation, Release 1.1.0

18 Chapter 2. Getting Started

CHAPTER 3

User Guide

CouchApp Command Line Tool

CouchApp is designed to structure standalone CouchDB application development for maximum application portabil-
ity.

CouchApp is a set of scripts and a jQuery plugin designed to bring clarity and order to the freedom of CouchDB‘s
document-based approach.

Command Line Usage

Warning: There are many undocumented commands. We need your help!

Full command line usage

Usage: couchapp [OPTIONS] [CMD] [CMDOPTIONS] [ARGS,...]

Options:
-d, --debug
-h, --help
--version
-v, --verbose
-q, --quiet

Commands:
autopush [OPTION]... [COUCHAPPDIR] DEST

--no-atomic send attachments one by one
--update-delay [VAL] time between each update

browse [COUCHAPPDIR] DEST
clone [OPTION]...[-r REV] SOURCE [COUCHAPPDIR]

-r, --rev [VAL] clone specific revision

19

http://jquery.com
http://couchdb.org

CouchApp Documentation, Release 1.1.0

generate [OPTION]... [view,list,show,spatial,filter,function,vendor]
→˓[COUCHAPPDIR] NAME

--template [VAL] template name
help
init [OPTION]... [COUCHAPPDIR]

-e, --empty create .couchapprc and .couchappignore only
-t, --template [VAL] create from template

push [OPTION]... [COUCHAPPDIR] DEST
--no-atomic send attachments one by one
--export don't do push, just export doc to stdout
--output [VAL] if export is selected, output to the file
-b, --browse open the couchapp in the browser
--force force attachments sending
--docid [VAL] set docid

pushapps [OPTION]... SOURCE DEST
--no-atomic send attachments one by one
--export don't do push, just export doc to stdout
--output [VAL] if export is selected, output to the file
-b, --browse open the couchapp in the browser
--force force attachments sending

pushdocs [OPTION]... SOURCE DEST
--no-atomic send attachments one by one
--export don't do push, just export doc to stdout
--output [VAL] if export is selected, output to the file
-b, --browse open the couchapp in the browser
--force force attachments sending

startapp [COUCHAPPDIR] NAME
vendor [OPTION]...[-f] install|update [COUCHAPPDIR] SOURCE

-f, --force force install or update
version

Commands

generate

Changed in version 1.1: Remove the ability to generate a whole app, use init instead.

Allows you to generate one of CouchApp components from a template. There are two type of components:

1. Functions

2. Vendor

If the template name do not be provide by user, we will use the default template.

For example, we can generate a show function:

$ cd /path/to/app
$ couchapp generate show hello
2016-06-18 17:36:21 [INFO] enjoy the show function, "hello"!
$ tree shows
shows
- hello.js

0 directories, 1 file

20 Chapter 3. User Guide

CouchApp Documentation, Release 1.1.0

init

Changed in version 1.1: Introduce different level of init.

Initialize a CouchApp. We provide three levels of initialization:

1. The minimal init, with the -e command line option.

2. The basic skeleton. This is the default level.

3. Init from template, with the -t TEMPLATE command line option.

The Minimal Init

We add an option -e for init. The e stands for empty. If you just want to start from scratch, please choose this init
level.

$ couchapp init -e myapp
$ cd myapp
$ tree -a
.
- .couchappignore
- .couchapprc

0 directories, 2 files

Note: The file .couchapprc is required for couchapp.

The Basic Skeleton

This is the default level of init command. We will prepare some dir skeleton for you.

$ couchapp init myapp
$ cd myapp
$ tree -a
.
- .couchappignore
- .couchapprc
- _attachments
- _id
- filters
- lists
- shows
- updates
- views

6 directories, 3 files

Init from Template

We can create our CouchApp from a template. The template <couchapp-template will be handy with some hook. For
instance, someone can write an npm hook for installing node modules during template generating.

3.1. CouchApp Command Line Tool 21

CouchApp Documentation, Release 1.1.0

For more info about template, please check out App Template section.

$ couchapp init -t default myapp
$ cd myapp
$ tree -a
.
- .couchappignore
- .couchapprc
- README.md
- _attachments
| - index.html
| - script
| | - app.js
| - style
| - main.css
- _id
- couchapp.json
- filters
- language
- lists
- shows
- updates
- vendor
| - couchapp
| - _attachments
| | - jquery.couch.app.js
| | - jquery.couch.app.util.js
| | - jquery.couchForm.js
| | - jquery.couchLogin.js
| | - jquery.couchProfile.js
| | - jquery.mustache.js
| | - md5.js
| - metadata.json
- views

- recent-items
- map.js

12 directories, 18 files

push

Push a couchapp to one or more CouchDB server.

$ cd mycouchapp
$ couchapp push http://someserver:port/mydb

• --no-atomic option allows you to send attachments one by one. By default all attachments are sent inline.

• --export options allows you to get the JSON document created. Combined with --output, you can save
the result in a file.

• --force: force attachment sending

• --docid option allows you to set a custom docid for this couchapp

22 Chapter 3. User Guide

http://couchdb.apache.org

CouchApp Documentation, Release 1.1.0

pushapps

Like push but on a folder containing couchapps. It allows you to send multiple couchapps at once.

$ ls somedir/
app1/ app2/ app3/
$ couchapp pushapps somedir/ http://localhost:5984/mydb

pushdocs

Like pushapps but for docs. It allows you to send a folder containing simple document. With this command you
can populate your CouchDB with documents. Anotther way to do it is to create a _docs folder at the top of your
couchapp folder.

startapp

Deprecated since version 1.1: Please use init instead.

It’s an alias of init APP_NAME, e.g.:

$ couchapp startapp myapp

Configuration

Local Configuration

The following config files are placed in each CouchApp directory.

.couchapprc and couchapp.json

Every CouchApp MUST have a .couchapprc file in the application directory; the couchapp.json is optional.

Both files are a JSON object which contains configuration parameters that the command-line app uses to build and
push your CouchApp. Note that if they contain the same fields, the .couchapprc will win.

The couchapp generate and couchapp init commands create a default version of this file for you.

So, what’s diff between .couchapprc and couchapp.json? Usually, we will put not only configs but some
metadata into couchapp.json. couchapp.json will be published via couchapp push; the .couchapprc
won’t.

The valid fields in .couchapprc:

env Place your db credentials here. This field is .couchapprc only.

extensions List of your custom extensions.

hooks Your custom hooks.

vendors List of your vendor handlers.

3.1. CouchApp Command Line Tool 23

http://couchdb.apache.org

CouchApp Documentation, Release 1.1.0

{
"env": {

// ...
},
"extensions": [

// ...
],
"hooks": {

// ...
},
"vendors": [

// ...
]

}

The valid fields in couchapp.json:

Changed in version 1.1

The env is not available here. Also, do not place any private credentials in this file. This file will be distributed via
couchapp push.

{
// other metadata here
// "name": "myCouchApp",
// "version": 1.0,
// ...
"extensions": [

// ...
],
"hooks": {

// ...
},
"vendors": [

// ...
]
// ...

}

Example

The most common use for the .couchapprc file is to specify one or more CouchDB databases to use as the destina-
tion for the couchapp push command. Destination databases are listed under the env key of the .couchapprc
file as follows:

{
"env" : {
"default" : {

"db" : "http://localhost:5984/mydb"
},
"prod" : {

"db" : "http://admin:password@myhost.com/mydb"
}

}
}

24 Chapter 3. User Guide

CouchApp Documentation, Release 1.1.0

In this example, two environments are specified: default, which pushes to a local CouchDB instance without any
authentication, and prod, which pushes to a remote CouchDB that requires authentication. Once these sections are
defined in .couchapprc, you can push to your local CouchDB by running:

couchapp push

(the environment name default is used when no environment is specified) and push to the remote machine using:

couchapp push prod

For a more complete discussion of the env section of the .couchapprc file, see the Managing Design Documents
chapter of CouchDB: The Definitive Guide.

.couchappignore

A .couchappignore file specifies intentionally untracked files that couchapp should ignore. It’s a simple json file
containing an array of regexps that will be use to ignore file.

For example:

[
".*\\.swp$",
".*~$"

]

will ignore all files ending in .swp and ~. Be sure to leave out the final , in the list.

You can check if couchapp really ignores the files by specifying the -v option:

couchapp -v push

Note: Windows doesn’t like files that only have an extension, so creating the .couchappignore file will be a
challenge in windows. Possible solutions to creating this file are:

Using cygwin, type:

cd /path/to/couchapp
touch .couchappignore

and then notepad .couchappignore.

Global Configuration

~/.couchapp.conf

One drawback to declaring environments in the .couchapprc file is that any usernames and passwords required to
push documents are stored in that file. If you are using source control for your CouchApp, then those authentication
credentials are checked in to your (possibly public) source control server. To avoid this problem, the couchapp tool
can also read environment configurations from a file stored in your home directory named .couchapp.conf. This
file has the same syntax as .couchapprc but has the advantage of being outside of the source tree, so sensitive login
information can be protected.

If you already have a working .couchapprc file, simply move it to ~/.couchapp.conf and run
couchapp init to generate a new, empty .couchapprc file inside your CouchApp directory. If you don’t

3.1. CouchApp Command Line Tool 25

http://guide.couchdb.org/draft/managing.html#configuring

CouchApp Documentation, Release 1.1.0

have a .couchapprc file, couchapp will display the dreaded couchapp error: You aren't in a
couchapp message.

~/.couchapp/

Please see App Template.

Todo

more information about other templates like vendor, view, etc.

App Template

Most of the time, you will use couchapp generate to create a new CouchApp with the default directory layout,
example functions, and vendor directories. If you find yourself creating multiple CouchApps that always contain the
same third-party or in-house files and libraries, you might consider creating a custom app template containing these
files and using the --template option of the generate command to create your customized CouchApps.

After creating a new couchapp, you will have a project structure that looks something like this template project. The
following libraries are included with your new CouchApp by default.

~/.couchapp

Custom templates are stored as subdirectories under the ~/.couchapp/templates directory. The name of the
subdirectory is used in the --template option to specify which template files are to be used in the couchapp
generate command. The default template name is app, so by creating ~/.couchapp/templates/app and
placing files and directories under that path, you can replace almost all of the default files created by couchapp
generate.

Libraries

CouchDB API jquery.couch.js

The JQuery library included with CouchDB itself for use by the Futon admin console is used to interact with couchdb.

Documentation

CouchApp Loader jquery.couch.app.js

A utility for loading design document classes into your Javascript application

Mustache

A simple template framework

26 Chapter 3. User Guide

https://github.com/jchris/proto
http://daleharvey.github.io/jquery.couch.js-docs/symbols/

CouchApp Documentation, Release 1.1.0

Extend couchapp

Couchapp can easily be extended using external python modules or scripts. There are 3 kind of extensions:

• extensions: allows you to add custom commands to couchapp

• hooks: allows you to add actions on pre-/post (push, clone, pushdocs, pushapps) events.

• vendors handlers: allows you to add support for different sources of vendor

Extensions

Extensions are eggs or python modules registered in the config file in extensions member, e.g.:

"extensions": [
"egg:mymodule#name"

]

Eggs uri are entry points uri starting with egg: prefix. To just load python module use an uri with the form:
python:mymodule.myextension.

To load eggs add an entry point in couchapp.extension sections. More info about entry points here.

An extension is a python module loaded when couchapp start. You can add custom commands to couchapp via this
way. To add custom commands simply add a dict named cmdtable. This dict is under the format:

cmdtable = {
'cmdname': (function, params, 'help string'),

}

params is a list of options that can be used for this function (the -someoption/–someoption= args):

params = [
('short', 'long', default, 'help string'),

]

short is the short option used on command line (ex: -v) long is the long option (ex: –verbose)

default could be True/False/None/String/Integer

Hooks

Couchapp offers a powerful mechanism to let you perform automated actions in response of different couchapp events
(push, clone, generate, vendor).

Hooks are eggs or python modules registered in the config file in hooks member, e.g.:

"hooks": {
"pre-push": [

"egg:couchapp#compress"
]

}

Like extennsions egg uri start with egg: prefix and python module with python:. Entry point are added to
couchapp.hook distribution. Here is the declaration of coupress hook in couchapp setup.py:

3.1. CouchApp Command Line Tool 27

http://packages.python.org/distribute/pkg_resources.html#entry-points

CouchApp Documentation, Release 1.1.0

setup(
name = 'Couchapp',
...

entry_points="""
...

[couchapp.hook]
compress=couchapp.hooks.compress:hook

...
""",

...
)

hooks are python functions like this:

def hook(path, hooktype, **kwarg):
...

path is the directory of the CouchApp on the filesystem, hooktype is the name of the event pre-/
post-(push|clone|generate|vendor) and kwargs a list of arguments depending on the event:

• push: dbs: list of Database object

• clone: source: the source of the couchapp to clone

• vendor: source, the uri of vendor, action, could be install or update.

• generate: None

Have a look in compress hook source for a complete example.

Vendors handlers

for vendor_uri in self.conf.get('vendors'):
obj = util.parse_uri(vendor_uri, "couchapp.vendor")
vendors_list.append(obj)

Vendors handlers are used to manage installation or update of vendors. Like extensions or hooks vendors handlers are
eggs or python modules registered in config file:

{
"vendors": [

"egg:couchapp#git",
"egg:couchapp#hg",
"egg:couchapp#couchdb"

]
}

(above is the default). Entry point are added to couchapp.vendor distribution, e.g.:

setup(
name = 'Couchapp',
...

entry_points="""

28 Chapter 3. User Guide

http://github.com/couchapp/couchapp/tree/master/couchapp/hooks/compress/

CouchApp Documentation, Release 1.1.0

[couchapp.vendor]
git=couchapp.vendors.backends.git:GitVendor
hg=couchapp.vendors.backends.hg:HgVendor
couchdb=couchapp.vendors.backends.couchdb:CouchdbVendor

...
""",

...
)

A vendor is an object inheriting couchapp.vendor.base.BackendVendor class:

class MyVendor(BackendVendor):
""" vendor backend interface """
url = ''
license = ''
author = ''
author_email = ''
description = ''
long_description = ''

scheme = None

def fetch(url, path, *args, **opts):
...

url is the url of the vendor source

license the license of the vendor

author name of author

author_email email of author

description short description of this vendor

long_descrtiption long description

scheme list of url prefix on which this handler will be use. (e.g.: [’git’, ‘git+ssh’] for git://|git/ssh:// urls)

The fetch function take the url given in console, the path of couchapp.

Here is an example for the default git vendor:

class GitVendor(BackendVendor):
url = 'http://github.com/couchapp/couchapp'
author = 'Benoit Chesneau'
author_email = 'benoitc@e-engura.org'
description = 'Git vendor handler'
long_description = """couchapp vendor install|update from git::

git://somerepo.git (use git+ssh:// for ssh repos)
"""

scheme = ['git', 'git+ssh']

def fetch(self, url, path, *args, **opts):
....

Full source is on the git repo.

3.1. CouchApp Command Line Tool 29

http://github.com/couchapp/couchapp/blob/master/couchapp/vendors/backends/git.py

CouchApp Documentation, Release 1.1.0

Using CouchApp with Multiple Design Documents

Here is what I did to use couchapp with multiple design documents. I want to setup a project for a new database
test6 with a design doc called design_doc1.

Make sure couchdb and couchapp are installed and that couchdb is started.

First check that test6 doesn’t exist:

$ curl http://127.0.0.1:5984/test6
{"error":"not_found","reason":"no_db_file"}

OK. That was expected.

Generate a new CouchApp:

$ couchapp generate test6
$ cd test6
$ ls
_attachments evently language shows vendor
couchapp.json _id lists updates views

Now edit .couchapprc as follows so it looks like

{ "env":
{ "default":

{ "db":"http://127.0.0.1:5984/test6" }
}

}

Note: It looks like couchapp doesn’t pick up the default db in what follows when I do couchapp push

Make a directory for design documents:

$ mkdir _design

Make a directory for design_doc1

$ mkdir _design/design_doc1

move the design doc files created with couchapp generate to the design_doc1 directory:

$ mv _attachments evently lists shows updates vendor views ./_design/design_doc1

review the directory structure

$ ls _design/design_doc1

_attachments evently lists shows updates vendor views

Now push design_doc1. Note that I have to include the url of the database as a parameter. Couchapp doesn’t seem
to pick up the default db when I push from the _design directory.

http://127.0.0.1:5984/test6 is the url of the new db

$ couchapp push _design/design_doc1 http://127.0.0.1:5984/test6

30 Chapter 3. User Guide

CouchApp Documentation, Release 1.1.0

2010-08-23 15:47:45 [INFO] Visit your CouchApp here:
http://127.0.0.1:5984/test6/_design/design_doc1/index.html

Now check to see if db test6 was created:

$ curl http://127.0.0.1:5984/test6
{"db_name":"test6","doc_count":1,"doc_del_count":0,"update_seq":1,"purge_seq":0,
→˓"compact_running":false,"disk_size":106585,"instance_start_time":"1282603665650439",
→˓"disk_format_version":5}

Now go into a browser and take a look at the test6 db

http://127.0.0.1:5984/_utils/database.html?test6

You should see _design/design_doc1 listed on the html page. That’s good, it means that design_doc1 was
created.

Take a look at design_doc1 in the futon web admin. Open this URL in your browser:

http://127.0.0.1:5984/_utils/document.html?test6/_design/design_doc1

You should see a nice listing of the design_doc1. Try opening the index page in your browser:

http://127.0.0.1:5984/_utils/document.html?test6/_design/design_doc1/index.html

This should serve up index.html from the _attachments subdirectory test6/_design/design_doc1/
_attachments/index.html.

Couchapp generate had created a sample view called recent-items. Try querying it:

$ curl http://127.0.0.1:5984/test6/_design/design_doc1/_view/recent-items
{"total_rows":0,"offset":0,"rows":[]}

That’s it. Multiple design can be used to create different interfaces for users with different roles. For example, consider
some data and the different ways that and admin versus a regular user interacting with it.

JavaScript Application Programming

All application logic in a couchapp is provided by JavaScript. There is a library called jquery.couch.js that is distributed
with every CouchDB installation. Here is the documentation for jquery.couch.js

Using backbone.js with CouchApp

Backbone.js is minimalist mvc framework for JavaScript, written by Jeremy Ashkenas, the author of coffee script.
Backbone is a good choice for creating larger CouchApps, as an alternative to Evently. A robust backbone-couchdb
connector that supports realtime updates via the _changes feed is supported by Jan Monschke.

See this introduction to CouchApp with backbone.js by Jan.

Extended version of backbone couch connector (with fixing some issues, extending functionality) is available here:

https://github.com/andrzejsliwa/backbone-couch

3.2. JavaScript Application Programming 31

https://github.com/apache/couchdb/blob/trunk/share/www/script/jquery.couch.js
http://daleharvey.github.com/jquery.couch.js-docs/symbols/index.html
http://backbonejs.org/
http://janmonschke.posterous.com/backbone-couchdb-give-your-couchapp-some-back
http://backbonejs.org/
http://backbonejs.org/
https://github.com/andrzejsliwa/backbone-couch

CouchApp Documentation, Release 1.1.0

An example use case

https://github.com/andrzejsliwa/couch-watch Also check out the List of CouchApps.

The Garden

Warning: The original database of garden was gone. Some legacy resources are here.

The CouchApp Garden is a CouchApp designed to make sharing other CouchApps easy. Once you have the Garden
installed on your CouchDB, you can use it to install other CouchApps.

The basics

Currently, the Garden needs a lot of work, but the basic ideas are there. Essentially, it can copy design documents
from your other databases, into the Garden database. As it copies them, it renames them so that they don’t have ids
that start with _design. This means they can be replicated around without the replicator having to run with admin
privileges. Also, the apps don’t run code when they are just sitting in the Garden.

Once you have a local Garden database, you can install apps from it, into databases on your CouchDB. The garden
document will be copied to the target database, as a design document again, and there will be a link to visit that
application.

Sharing your app

To add your app to the Garden, install the Garden locally, and use its import link, to add the app to your local garden
database. Then replicate that database to http://couchapp.org/garden, and check out the updated Garden.

Contributing to the Garden

The Garden code is on Github, please fork and contribute.

CouchApps and DesktopCouch

In version 0.7, couchapp.py has a new feature allowing you to push, clone and browse CouchApps in the local
CouchDB installed with desktopcouch, so users of linux distributions where desktopcouch has been ported won’t have
to install another CouchDB to test and will be able to pair it with other desktop.

How it works?

To push to your local couchdb installed with desktopcouch:

couchapp push desktopcouch://testdb

To clone:

32 Chapter 3. User Guide

https://github.com/andrzejsliwa/couch-watch
http://couchapp.iriscouch.com/garden/_design/garden/index.html
http://couchapp.org/garden/_design/garden/index.html
http://couchapp.org/garden
http://couchapp.org/garden/_design/garden/index.html
http://github.com/jchris/garden
http://freedesktop.org/wiki/Specifications/desktopcouch

CouchApp Documentation, Release 1.1.0

couchapp clone desktopcouch://testdb/_design/test test1

To browse and use your application:

couchapp browse . desktopcouch://mydb

and with push option :

couchapp push --browse . desktopcouch://mydb

List of CouchApps

Please add links to CouchApps (alphabetical order will help avoid duplicates in the long run). You may also be
interested in the CouchApp Garden.

Afghan War Diary

A GeoCouch app that provides a browseable map of entries from the Wikileaks Afghan Diaries.

Code

BlueInk

The beginnings of a conversion of the BlueInk CMS to a CouchApp. Currently, it can serve as a view-engine for web
pages wearing Mustache templates.

Code

Bookkeeping

A little CouchApp that helps visualizing expenses for my household. Currently in German only. I am working on a
branch that uses views and _changes instead of a pure client side implementation with jquery.

Code

Boom Amazing

Presentation software with a twist. Uses SVG and pan and zoom. Based on Sammy.js.

Code

Brunch-Colors

Brunch-Colors is a simple, addictive color-matching game that was made with Brunch that utilizes such tools as
Backbone.js, eco and stylus.

Play it here

Code

3.5. List of CouchApps 33

http://github.com/benoitc/afgwardiary
http://blueinkcms.com/
http://mustache.github.io/
http://github.com/bigbluehat/blueink
http://github.com/ckeen/bookkeeping
http://code.quirkey.com/sammy/
http://github.com/langalex/boom_amazing
https://github.com/brunch/brunch
http://backbonejs.org/
http://brunch-colors.com/
https://github.com/janmonschke/Brunch-colors

CouchApp Documentation, Release 1.1.0

Costco

A small UI for bulk editing CouchDB documents.

Code

CouchCrawler

Spiders the web into CouchDB. Uses a Python script for web spidering. Read the blog post here

Code

CouchWatch

Simple logs watcher with realtime view and simple searching. For using witch Rails and JavaScript logger. Written in
Backbone.js

Code

CouchDB Contact Form

Simple Contact Form CouchApp for CouchDB. Includes simple mail spooler.

Code

CouchDB Projector

For doing presentations.

Code

CouchDB Treatment history

Client management, visits history monthly and daily. Create visit.

Uses only CouchDB, and React.

Code

Demo

CouchLog

Application Logging tool. Uses a CouchDB backend with a CouchApp-based interface for sorting through log entries
and troubleshooting/debugging applications. Leverages schema-less approach to allow log entries to contain structured
meta-information to aid in troubleshooting

Code

34 Chapter 3. User Guide

http://github.com/harthur/costco
http://syntacticbayleaves.com/2010/01/17/announcing-couch-crawler-a-couchdb-search-enginecrawler/
http://github.com/clofresh/couch-crawler
http://backbonejs.org/
https://github.com/andrzejsliwa/couch-watch
http://github.com/jasondavies/couchdb-contact-form
http://github.com/phred/couchdb-projector
https://github.com/copyhold/couchapp-treatment-plan
https://copyhold.cloudant.com/demo-beds/_design/krovati-couch/index.html
http://github.com/desdev/CouchLog

CouchApp Documentation, Release 1.1.0

csv2couchdb

small app to populate couchdb using data from CSV files

Code

Dimensional Drawing

Collaborative 2.5D drawing space.

Code

Demo

Focus

A TODO tracker that replicates. Run it on your phone, run it on your server, run it on your laptop. Keep them
synchronized. Never forget to do that important thing!

Code

Deployments:

• Demo

Food Cart Pages

A catalog of all the food carts in Portland.

Deployments:

• http://foodcartpages.com

HejHej

A CouchApp for language learning. Lets you train vocabularies and solve different kinds of games/tests. Has Cucum-
ber tests.

Code

Hub List

Open source GTD style productivity app. Manage your tasks from bug trackers, pm tools and other online todo lists
all in one place. Built with Ext JS 4.

Code

IrcLog CouchApp

A couchapp to view irc logs stored in CouchDB.

The irclogs can be stored by gdamjan’s ircbot and its couchdb loging plugin .

Code

3.5. List of CouchApps 35

https://github.com/Mango-information-systems/csv2couchdb
https://github.com/clehner/dimensional-drawing
http://www.dimensionaldrawing.com/
http://github.com/jchris/Focus
http://couchapp.org/focus/_design/focus/index.html
http://foodcartpages.com/
http://github.com/langalex/hejhej
http://hublistapp.com/
https://github.com/rawberg/Hub-List_GTD-Productivity
https://github.com/gdamjan/irclog-couchapp
https://github.com/gdamjan/erlang-irc-bot-skopjehacklab/blob/master/src/ircbot_plugin_couch_log.erl
https://github.com/gdamjan/irclog-couchapp

CouchApp Documentation, Release 1.1.0

Li.Couch

Open source LIst notes. Easy track of your items. Built with Knockout.js.

Code

Demo

MapChat

A real time chat app on a Google Map. Points on a map as a chat rooms.

Code

Demo

Microanalytics

Personal hackable web-analytics.

Code

Python command-line client

Modern Forum

A new project aiming to bring real-time, CouchDB-powered forums to the masses.

Code

Monocles (ex-CouchAppSpora)

diaspora... as a couchapp! in pure javascript and fully OStatus compliant (almost)

Code and more info Demo

MTG Pricing CouchApp

A mobile-centric app to get the pricing information for Magic: The Gathering cards quickly and easily.

Code

Mytweets

A personal Twitter archive.

Deployments:

• @yssk22

36 Chapter 3. User Guide

http://li.iriscouch.com/
http://github.com/avalez/li.couch
http://li.iriscouch.com/
http://github.com/mapchat/mapchat
http://mapchat.me/
https://github.com/fiatjaf/microanalytics
https://github.com/fiatjaf/microanalytics-cli
https://github.com/andrewrabon/modern-forum
http://github.com/maxogden/couchappspora
http://monocl.es/
http://github.com/Madisonw/MTG-Pricing-Couchapp
http://www.yssk22.info/relax/_design/mytweets/_list/timeline/by_date?descending=true

CouchApp Documentation, Release 1.1.0

Nymphormation

A social link sharing tool.

Code

Deployments:

• Nymphormation

Pages

A Markdown wiki. This was the wiki used to create this documentation originally.

Install Pages

If anyone else has issues understanding this whole vhosts thing i’ll give a grandma-can-do-it recount here of my
troubles.

If you want to set up pages on your machine and you are not very familiar with what’s what, here it goes:

Get pages from github: http://github.com/couchone/pages

Navigate to your fav directory and do this in the terminal:

git clone git://github.com/couchone/pages.git

Make sure to install couchapp python helper app, i won’t go into the details, the github instructions are great

Hope you have couchdbx installed on osx or the equivalent on your favourite dev/production platform

Do this from inside your pages directory:

couchapp init
couchapp push . http://localhost:5984/pages

That will get you the app into your db, nothing new here, the git hub instructions will tell you the
same thing, what got me (besides a bad commit ;)) is the instruction on http://blog.couch.io/post/443028592/
whats-new-in-apache-couchdb-0-11-part-one-nice-urls

The section about vhosts is a bit ambiguous for those that aren’t in the know...

The instructions there are as follows:

“Each HTTP 1.1 request includes a mandatory header field Host: hostname.com with the server name it is trying to
reach. You can tell CouchDB to look for that Host header and redirect all requests that match to any URL inside
CouchDB by adding this to your configuration file local.ini:

[vhosts]
couch.io = /couchio/_design/app/_rewrite"

Well, what the hell is local.ini?

Who knows, who cares, go to your couchdb app and navigate to the configuration section.

Go to the bottom of the page and “Add new section”

Type into the 3 fields that popup:

• vhosts

3.5. List of CouchApps 37

http://bitbucket.org/benoitc/nymphormation/
http://nymphormation.org/n/_design/nymphormation/_list/links/news?limit=11&descending=true
http://github.com/couchone/pages
http://wiki.github.com/couchapp/couchapp/manual-2
http://blog.couch.io/post/443028592/whats-new-in-apache-couchdb-0-11-part-one-nice-urls
http://blog.couch.io/post/443028592/whats-new-in-apache-couchdb-0-11-part-one-nice-urls

CouchApp Documentation, Release 1.1.0

• your-pages-site-name:5984

• /pages/_design/pages/_rewrite

Now go to the terminal and type:

textmate /etc/hosts

(Notice i’m making assumptions here, basically, get to the hosts file and open it...)

Add:

127.0.0.1 your-pages-site-name

Save, go to a browser type:

your-pages-site-name:5984

Hopefully that worked out OK for you.

See ya!

Code

Deployments:

• CouchApp

Processing JS Studio

Web-based application to store Processing JS sketches and renderings. Storage and service provided by CouchDB via
CouchApp.

Code

Proto

A basic CouchApp for inputing info from a form, and listing it in real time. This is the starting point for many other
applications, as well as the Evently Guided Hack Video Tutorial.

Code

Or run couchapp generate foo to get your own version, ready for hacking.

Deployments:

• jChris

• Jan

• Goto

Random Lecture!

A simple Sammy-On-CouchApp (soca) app that plays a random technical lecture or tech talk.

• Demo

• Code

• List of all lectures

38 Chapter 3. User Guide

http://github.com/couchone/pages
http://wiki.couchapp.org/
http://github.com/hpoydar/processing-js-studio
http://www.youtube.com/watch?v=Xk5gaUURdJI
http://github.com/jchris/proto
http://jchris.iriscouch.com/proto/_design/proto/index.html
http://jan.iriscouch.com/proto/_design/proto/index.html
http://goto.iriscouch.com/test/_design/proto/index.html
http://randomlecture.iriscouch.com/lectures/_design/lectures/index.html
http://github.com/maxogden/random-lecture
http://github.com/maxogden/tech-talk-urls

CouchApp Documentation, Release 1.1.0

Sales Stats

A simple CouchApp Demo that displays sales statistics as a bar graph. It uses the _changes API together with
Evently, so that the sales statistics are updated live (in near realtime).

Code

Demo

Scrapboard

A decentralized implementation of the old Orkut scrapbook.

Code

Skim - Simple knowledgebase for insightful metabolomics

The vision behind Skim is to develop a tool that can help analyze vast quantities of peer reviewed and community-
provided information on metabolites, biochemical reactions and pathways. Heavily under development - may be
unstable from time to time.

Code

Demo

Sleepcam

Whenever a user’s computer wakes from sleep, the software takes a picture with their webcam and posts it to their
profile on sleepcam.org. Users can like and comment on eachother’s pictures.

Code

Demo

Sofa

Standalone CouchDB Blog with tagging, Atom feeds, and gravatar comments , used by the O’Reilly CouchDB book.

Code

Deployments:

• Daytime Running Lights

• Chewbranca

• Plok Light

• Blog Bleeds

Snippets

A Couchdb snippets app with a Couchfuse backend.

Code

3.5. List of CouchApps 39

http://github.com/KlausTrainer/sales_stats
http://mambofulani.iriscouch.com/sales_stats/_design/sales_stats/index.html
https://github.com/fiatjaf/scrapboard
https://github.com/kbhalerao/Social-Metabolomics
http://abe-bhaleraolab.age.uiuc.edu/skim
https://github.com/clehner/sleepcam
http://sleepcam.org/
http://github.com/jchris/sofa
http://jchrisa.net/
http://chewbranca.com/
http://raw.jan.io/plok/_design/sofa/_list/index/recent-posts?descending=true&limit=5
http://blog.bleeds.info/
http://github.com/narkisr/snippet-app

CouchApp Documentation, Release 1.1.0

Swinger

A presentation engine. Like Keynote in the browser, but simpler. Uses Sammy.js.

Code

Deployments:

• http://swinger.quirkey.com

TapirWiki

A wiki couchapp. Uses textile as the markup language and has a few macros, templates and support for attachments.

Code

Taskr

A task tracker. This one got deprecated by Focus. It’s got some cool features so it’s worth looking at if you are building
something similar.

Code

The Infinite Maze

A collaborative maze drawing app.

Code

Demo

Toast

A real time chat app. One of the first demos of the _changes API.

Code

Demo

Tweet Eater

A Twitter search archive and real time display. Uses a Ruby backend to import tweets from the streaming API.

Code

hckr.it

A Hacker News clone built entirely using CouchDB that can be served as a couchapp.

Code

Demo

40 Chapter 3. User Guide

http://code.quirkey.com/sammy/
http://github.com/quirkey/swinger
http://swinger.quirkey.com/
http://code.google.com/p/tapirwiki/
http://github.com/jchris/taskr
https://github.com/clehner/infinite-maze/
http://www.theinfinitemaze.com/
http://github.com/jchris/toast
http://jchrisa.net/toast/_design/toast/index.html
http://github.com/doppler/TweetEater
http://news.ycombinator.com/
https://github.com/lmatteis/hckr.it
http://www.hckr.it/

CHAPTER 4

Design

The following documentation tell you how couchapp.py works.

The CouchApp Filesystem Mapping

The couchapp script has a cool way of pushing files to CouchDB’s design documents. The filesystem mapping is
done via the couchdbkit Python library.

If you have folders like:

myapp/
views/
foobar/

map.js
reduce.js

It will create a design document like this:

{
"_id" : "_design/myapp",
"views" : {
"foobar" : {

"map" : "contents of map.js",
"reduce" : "contents of reduce.js"

}
}

}

This is designed to make it so you get proper syntax highlighting in your text editor.

41

http://couchdbkit.org/docs/storing_docs_and_designdocs_on_filesystem.html
http://couchdbkit.org/

CouchApp Documentation, Release 1.1.0

Complete Filesystem-to-Design Doc Mapping Example

myapp/
_attachments/
images/

logo.png
_docs/
sample.json
doc_needing_encoding/

_id (the ID for the document as text on the first line of this file)
title (same as ID, just for the title field. Repeat pattern as needed)
content.html (HTML content that will be encoded when it's added to the JSON doc)

lists/
xml.js

rewrites.js
shows/
preview.js
xml.js

updates/
in-place.js

views/
foobar/

map.js
reduce.js

validate_doc_update.js

The _attachments folder will turn each file into an attachment on the resulting Design Document. The attachments
will be named based on their file path (ex: “image/logo.png”).

The contents of the _docs folder are turned into actual JSON documents in CouchDB. The contents of the .json files
will be input exactly as they are in the file. The name of the document with be either the file name or the _id field
from the JSON object in that file.

Folders under _docs will be turned into documents with each file in the folder being a key/value pair in the resulting
JSON document. HTML and XML files (and maybe others?) will be JSON encoded before being added to the JSON
document. An _id file will be used (if present) as the ID of the new document. Otherwise the folder name will
become the ID.

The rest of the folder structure above will become this JSON Design Document

{
"_id" : "_design/myapp",
"_attachments": {
"images/logo.png": {

"content_type": "image/png",
"revpos": 1,
"digest": "md5-GDPL+eLwE7kzEDWY7X4KdQ==",
"length": 886,
"stub": true

}
},
"lists": {
"xml": "function..."

},
"rewrites": "function...",
"shows": {
"preview": "function...",
"xml": "function..."

}

42 Chapter 4. Design

CouchApp Documentation, Release 1.1.0

"updates": {
"in-place": "function..."

},
"views": {
"foobar": {

"map": "function...",
"reduce": "function..."

}
},
"validate_doc_update": "function...",

}

4.1. The CouchApp Filesystem Mapping 43

CouchApp Documentation, Release 1.1.0

44 Chapter 4. Design

CHAPTER 5

Contributing to CouchApp Ecosystem

Contributing

This repository holds all of the code in the project. The Python couchapp script is the bulk of the repository, but the
JavaScript stuff is in there to.

The jquery.couch.app.js and jquery.evently.js files are both in the vendor directory.

If you have a commit to one of the CouchApp files (JavaScript or otherwise) please let us know on the mailing list as
we don’t always get the messages in our Github inbox.

Also, documentation and blog posting is very much appreciated. Don’t be afraid to tell us how CouchApp sucks.
We want it to be very easy to use, so giving us a high bar to reach is important.

If you prefer developing mobile apps with Titanium, @pegli maintains a module which wraps Couchbase Lite for that
platform.

If you’ve built a sync powered app and are starting to hit the point where Apache CouchDB filtered replication doesn’t
scale for you, you might want to check out the Couchbase Sync Gateway which uses the same sync protocol but is
designed to give efficient subsets of a big data corpus to sync clients. So you can sync to CouchDB or Couchbase Lite
(nee TouchDB).

Or simply use rcouch a custom distribution of Apache CouchDB with a bunch of new features that offers since a while
incremental view changes (indexed on the disk) and replication support using a view and allows you to replicate in an
efficient manner subsets of your databases.

Last thing, PouchDB is the future of browser based sync apps. It can sync with the same sync protocols but uses the
built-in storage of HTML5.

45

https://github.com/couchapp/couchapp/tree/master/couchapp/templates/vendor/couchapp/_attachments
http://groups.google.com/group/couchapp

CouchApp Documentation, Release 1.1.0

Roadmap

Warning: The content is out of date.

Developer Toolchain

couchapp.py

• upload only changed attachments (md5 on attachment stubs?)

• Coverage rate improvement

• Python3 support

Node.js CouchApp Tools

• try Mikeal’s Node.js CouchApp style

JavaScript Libraries

$.couch.app()

• Make this responsible only for loading code from the Couch, and bootstrapping the CommonJS runtime.

• make $.couch.app.utils a commonjs library.

• move into Apache CouchDB’s share/www/script

RFC: Please Comment

This please suggest anything you think is missing.

46 Chapter 5. Contributing to CouchApp Ecosystem

CHAPTER 6

Other Resources

• IRC

– #couchdb

– #couchapp

• Search The CouchDB Mailing List/IRC Archive

• Mailing Lists

– http://mail-archives.apache.org/mod_mbox/couchdb-couchapp/

– http://groups.google.com/group/couchapp

• eNotes CouchApp Tutorial

47

http://archive.couchdb.org/
http://mail-archives.apache.org/mod_mbox/couchdb-couchapp/
http://groups.google.com/group/couchapp
http://materials.geoinfo.tuwien.ac.at/tutorials/couchapp

	Overview
	Introduction

	Getting Started
	Installation
	Getting Started

	User Guide
	CouchApp Command Line Tool
	JavaScript Application Programming
	The Garden
	CouchApps and DesktopCouch
	List of CouchApps

	Design
	The CouchApp Filesystem Mapping

	Contributing to CouchApp Ecosystem
	Contributing
	Roadmap

	Other Resources

