

 Navigation

 	
 index

 	
 next |

 	CouchApp 1.0.2 documentation

CouchApp: Web Application Hosted in Apache CouchDB

Note

This documentation is a work in progress.
Contribution welcomed.

Overview

We will introduce the main concepts of CouchApp here.

	Introduction
	What is CouchApp?

	CouchApp Development Tools

Getting Started

Let’s get started with the couchapp.py command line tools.

	1. Installation
	Requirements

	Installing on all UNIXs

	Installing in a sandboxed environnement

	Installing on Mac OS X

	Installing on Ubuntu

	Installing on Windows

	Previous Release

	2. Tutorial
	Generate your application

	Create a show function

	Push your CouchApp

	Clone your CouchApp

	External Resources

	The Standalone Applications [http://guide.couchdb.org/draft/standalone.html]
and Managing Design Documents [http://guide.couchdb.org/draft/managing.html]
chapters of the O’Reilly CouchDB book

User Guide

	CouchApp Command Line Tool
	1. Installation

	2. Getting Started

	3. Command Line Usage

	4. Configuration

	5. App Template

	6. Extend couchapp

	7. Using CouchApp with Multiple Design Documents

	JavaScript Application Programming
	Using backbone.js with CouchApp

	The Garden
	The basics

	Sharing your app

	Contributing to the Garden

	CouchApps and DesktopCouch
	How it works?

	List of CouchApps
	Afghan War Diary

	BlueInk

	Bookkeeping

	Boom Amazing

	Brunch-Colors

	Costco

	CouchCrawler

	CouchWatch

	CouchDB Contact Form

	CouchDB Projector

	CouchLog

	csv2couchdb

	Dimensional Drawing

	Focus

	Food Cart Pages

	HejHej

	Hub List

	IrcLog CouchApp

	Li.Couch

	MapChat

	Microanalytics

	Modern Forum

	Monocles (ex-CouchAppSpora)

	MTG Pricing CouchApp

	Mytweets

	Nymphormation

	Pages

	Processing JS Studio

	Proto

	Random Lecture!

	Sales Stats

	Scrapboard

	Skim - Simple knowledgebase for insightful metabolomics

	Sleepcam

	Sofa

	Snippets

	Swinger

	TapirWiki

	Taskr

	The Infinite Maze

	Toast

	Tweet Eater

	hckr.it

Design

The following documentation tell you how couchapp.py works.

	The CouchApp Filesystem Mapping
	Complete Filesystem-to-Design Doc Mapping Example

Contributing to CouchApp Ecosystem

	How to Contribute

	Roadmap
	Developer Toolchain

	JavaScript Libraries

	RFC: Please Comment

Other Resources

	
	IRC

	
	#couchdb

	#couchapp

	Search The CouchDB Mailing List/IRC
Archive [http://archive.couchdb.org/]

	
	Mailing Lists

	
	http://mail-archives.apache.org/mod_mbox/couchdb-couchapp/

	http://groups.google.com/group/couchapp

	eNotes CouchApp Tutorial [http://materials.geoinfo.tuwien.ac.at/tutorials/couchapp]

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

Introduction

CouchApps are JavaScript and HTML5 applications served directly from CouchDB.
If you can fit your application into those constraints,
then you get CouchDB’s scalability and flexibility for free
(and deploying your app is as simple as replicating it to the production server).

There are also tools for deploying browser-based
apps to JSON web servers and PouchDB [http://pouchdb.com/]
is the future of browser based sync apps. It can sync with the same sync
protocols but uses the built-in storage of HTML5.

	What is CouchApp?
	The Basics

	CouchDB’s built-in programming model

	Hello World

	Make it easy it with the CouchApp toolchain

	CouchApp Development Tools
	cURL

	CouchApp command line tool

	node.couchapp.js

	erica

	Kanso

	soca

	Reupholster

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

 	Introduction

What is CouchApp?

Note

This article came from a blog post by @jchris.
Some contents are out-of-date.
We need your contribution!

The Basics

A CouchApp is just a JavaScript and HTML5 app that can be served
directly to the browser from CouchDB, without any other software in the
stack. There are many benefits (and some constraints) to doing it this
way. The first section of this article will address these tradeoffs.

In the bad old days (2008 and earlier), if you wanted to write a dynamic
database-backed web application, you had to have an architecture that
looked like a layer cake:

Browser (UI and links between pages)
------------------------ HTTP -------------------------
Application server (business logic, templates, etc)
------------------- custom binary ---------------------
Persistence: MySQL, PostgreSQL, Oracle

In fact, the bad old days are still with us, as most applications still
rely on fragile custom code, running in an application server like Ruby
on Rails, Python’s Django, or some kinda Java thing. The pain-points of
the 3 tier architecture are well known: application developers must
understand the concept of shared-nothing state, or else clients can see
inconsistent results if they are load balanced across a cluster of app
servers. The application server is usually a memory hog. And at the end
of the day, when you’ve finally gotten the app layer to horizontal
scalability, it turns our that your database-tier has fatal scalability
flaws...

CouchDB is an HTTP server, capable of serving HTML directly to the
browser. It is also a database designed from the ground up for
horizontal scalability. Did I say silver bullet? ;) (Of course it is not
a silver bullet – if you can’t fit your app into CouchDB’s constraints,
you’ll still have scaling issues.) If you can build your app with the
grain of CouchDB’s APIs, then you can piggyback on all the work
other [http://enda.squarespace.com/tech/2010/3/4/couchdb-at-scale-4-billion-requests-so-far.html]
people have done to scale.

The fact is, 2-layer applications are simpler:

Browser (UI and links between pages)
------------------------ HTTP -------------------------
CouchDB (persistence, business logic, and templating)

Because CouchDB is a web server, you can serve applications directly the
browser without any middle tier. When I’m feeling punchy, I like to call
the traditional application server stack “extra code to make CouchDB
uglier and slower.”

Aside from simplicity and the scalability that comes with it, there is
another major benefit to creating a 100% pure CouchApp:
Replication [http://wiki.apache.org/couchdb/Replication]. When your
app is hosted by just a CouchDB, that means it can be run from any
CouchDB, with no need to set up complex server-side dependencies. When
your app can run on any CouchDB, you are free to take advantage of
CouchDB’s killer feature: replicating the app and the data anywhere on
the network.

Have you ever been frustrated by a slow website? Filling out forms and
waiting even a few seconds for the response can be infuriating. Many
users will hit the submit button over and over again, compounding
whatever performance issues that are effecting them, while introducing
data integrity issues as well. Google, Facebook, and other large
competitive web properies know that perceived latency drives user
engagement like nothing else, and they invest huge sums to make their
sites seem
faster. [http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx]

Your site can be faster than theirs, if you serve it from localhost.
CouchDB makes this possible. Here are installers for OSX, Windows, and
Linux [http://couch.io/get] and you can install CouchDB on Android
here [http://couch.io/android].

The take-home message from this section is: CouchDB can scale. If your
app is served by raw CouchDB, it can scale just the same. Also, there’s
no server faster than the server running on your local device. And fast
is what matters for users.

In the next section we’ll see what it takes to get your app to be served
directly from CouchDB, and what you can (and can’t) do.

CouchDB’s built-in programming model

The CouchDB API is full featured and applicable to a lot of use cases.
We can’t possible go in-depth here. Instead we’ll focus only on the broad
outline, and on what is useful and necessary for CouchApps. If you want
to learn more, check out the CouchDB
wiki [http://wiki.apache.org/couchdb] or the free CouchDB
book [http://books.couchdb.org/].

The first thing to understand about CouchDB is that the entire API is
HTTP. Data is stored and retrieved using the protocol your browser is
good at. Even the CouchDB test
suite [http://jchris.couchone.com/_utils/couch_tests.html?script/couch_tests.js]
is written in JavaScript and executed from the browser.
It’s all just HTTP.

HTML Attachments

A common question I get from people starting to write Ajax apps using
CouchDB, is “when I try to query the CouchDB with jQuery, it doesn’t
work.” Usually it turns out that they have an index.html file on their
filesystem, which is attempting to do an Ajax call against the CouchDB
server. After I explain to them the same origin security
policy [http://en.wikipedia.org/wiki/Same_origin_policy], they start
to understand this this means CouchDB needs to serve their HTML (rather
than loading it in the browser direct from the filesystem).

CouchDB documents may have binary
attachments. [http://stackoverflow.com/questions/1439371/creating-a-couchdb-standalone-attachment-using-curl]
The easiest way to add an attachment to a document is via Futon.
We’ll do that later in this blog post.

So, the simplest possible CouchApp is just an HTML file, served directly
from CouchDB, that uses Ajax to load and save data from the CouchDB.

Map Reduce queries

What sets CouchDB apart from a simple key value store like Memcached or
Amazon S3 [http://aws.amazon.com/s3/], is that you can query it by
building indexes across the stored objects. You do this by writing
JavaScript functions that are passed each of your documents, and can
pick from them a set of keys under which you’d like to locate them.

So for a blog post, you might pick out all the tags, and make keys like
[tag, doc.created_at]. Once you have a view like that, you can
easily get a view of all your blog posts with a given tag, in
chronological order, no less. By adding the reduce operator _count
you can also see how many blog posts are tagged foo or whatever.

I’m not gonna try to teach you all about views here. Try the CouchDB
book’s guide to views [http://books.couchdb.org/relax/design-documents/views]
, the wiki [http://wiki.apache.org/couchdb/HTTP_view_API] and this
chapter on advanced views [http://books.couchdb.org/relax/reference/views-for-sql-jockeys].

Server Side Validations

The second thing people usually ask when they start to grok the CouchApp
model, is “How do I keep people from destroying all my data? How do I
ensure they only do what they are allowed to do?” The answer to that is
validation
functions [http://books.couchdb.org/relax/design-documents/validation-functions].
In a nutshell, each time someone saves or updates a CouchDB document, it
is passed to your validation function, which has the option to throw an
error. It can either throw {"forbidden" : "no matter what"} or
{"unauthorized" : "maybe if you login as someone else"} where, of
course, you are free to craft your own messages. If the function doesn’t
have any errors, the save is allowed to proceed.

Rendering Dynamic HTML

After a new user understands validation functions, they have begun to
see that perhaps CouchDB / CouchApps is a good candidate for their
application. But maybe something is missing... Search engines don’t
treat Ajax applications with the same respect they do static HTML
applications. Also, a fair proportion of users have JavaScript disabled,
or are using a screen-reader type application, which may not understand
Ajax.

These are all great reasons your application should ship the basic
content of a page as real-deal HTML. Luckily, CouchDB has an answer to
that as well.

Show
functions [http://books.couchdb.org/relax/design-documents/shows]
allow you to transform a document GET from JSON into the format of
your choice. On this wiki
application [http://pages.jchris.couchone.com/page/donk] the main
wiki content is rendered as server-side HTML, using a show function. You
can also use a show function to provide an XML, CSV, or even PNG version
of your original document. Some folks also use it to filter
security-sensitive fields from a JSON document, so that only public data
is available to end- users.

List
functions [http://books.couchdb.org/relax/design-documents/lists] are
the analog of show functions, but for view results. A view result is
just a long list of JSON rows. A list function transforms those rows to
other formats. Here is the JSON view of recent posts on my
blog [http://jchrisa.net/drl/_design/sofa/_view/recent-posts?descending=true&limit=5],
and here is the HTML page that results from running that same view
through a list
function. [http://jchrisa.net/drl/_design/sofa/_list/index/recent-posts?descending=true&limit=5]

We added these capabilities to CouchDB because we knew that without the
ability to serve plain-old HTML, we wouldn’t be completely RESTful.

Rounding out this group, is the ability to accept plain HTML form POSTs.
(And other arbitary input). For that, CouchDB uses update
functions, which can take arbitrary input and
turn it in to JSON for saving to the database.

Pretty URLs

“All well and good”, you may say, “but I can’t really suggest to my
clients that their website should have URLs like:

http://jchrisa.net/drl/_design/sofa/_list/index/recent-posts?descending=true&limit=5

I used to respond with skepicism to such claims, like a total moaf.
But I’ve mended my ways, and seen the light. It also didn’t hurt that
Benoit [http://twitter.com/benoitc] committed an awesome
rewriter [http://blog.couchbase.com/what%E2%80%99s-new-apache-couchdb-011-%E2%80%94-part-one-nice-urls-rewrite-rules-and-virtual-hosts]
to CouchDB, so we can provide nice pretty URLs like /posts/recent
instead of the above mess.

Realtime Updates

Lastly, something folks don’t usually ask for, but which is insanely
useful: realtime notification about changes to the
database. [http://guide.couchdb.org/draft/notifications.html]
Essentially, CouchDB keeps a record of the order in which operations
were applied to a given database. This way, you can always ask it
“what’s happened since the last time I asked?”

CouchDB implements this with the _changes feed, a JSON HTTP
response, which sends a single line, whenever something happens to the
database. Since CouchDB is implemented in Erlang, it is not expensive
for it to hold open tens of thousands of concurrent connections.

The _changes feed can be used to power realtime updates to a browser
UI. For instance, this chat
room [http://couchapp.org/example/_design/example/index.html] updates
in realtime whenever a new message is created.

The _changes feed is integral to CouchDB itself (not just a bolted
on feature), as it is used to power to replication itself. The
replicator listens to the changes feed of the source database, and
writes changes to the target database. This is what allows CouchDB to
keep 2 database in sync in near realtime.

You can also use _changes to drive asynchronous business logic.
There will be a webcast in August on this topic, as well as a blog post
with more details, from Couchio’s Jason
Smith [http://twitter.com/_jhs].

Filtered replication

One last part of the programming model. You can write a JavaScript
function that decides whether to include a given change in the
_changes feed. The possibilities are endless. See Jan’s blog post
on new replication
features [http://blog.couch.io/post/468392274/whats-new-in-apache-couchdb-0-11-part-three-new]
for some interesting use-cases that might stimulate your imagination.

Hello World

Now that I’ve described the theory of CouchApps to you, let’s dig into
the practice. Before we get into the expert toolchain, let’s see what we
can do with a little bit of HTML. I’ll assume you have a CouchDB running
at localhost. If you don’t, install one now (or signup for hosting at
Iris Couch [http://www.iriscouch.com/] or
Cloudant [http://cloudant.com/]).

Quick, create a file called index.html, and put this in it:

<!DOCTYPE html>
<html>
 <head><title>Tiny CouchApp</title></head>
 <body>
 <h1>Tiny CouchApp</h1>
 <ul id="databases">
 </body>
 <script src="/_utils/script/jquery.js"></script>
 <script src="/_utils/script/jquery.couch.js"></script>
 <script>
 $.couch.allDbs({
 success : function(dbs) {
 dbs.forEach(function(db) {
 $("#databases").append(''+db+'');
 });
 }
 });

 </script>
</html>

Now browse to your CouchDB’s Futon at http://localhost:5984/_utils and
create a database called whatever. Now visit that database, and create
a document. You will be creating what is known as a, Design Document,
which is a special kind of document in CouchDB that contains application
code. The only thing you need to know now is to set the document id to
something that begins with _design/ and save it. Now click the button
labeled Upload Attachment and choose the index.html file you just
created, and upload it. Now click the link in Futon for index.html, and
you should see a list of the databases on that CouchDB instance.

(rengel, 2012-09-05: Because of the Same Origin policy the index.html
file has to be in the same directory, or a subdirectory thereof, as your
whatever database.)

You gotta admit there was nothing to that.

Make it easy it with the CouchApp toolchain

Now that we’ve seen how you can build a basic CouchApp with the same set
of tools you’d use to do plain-old HTML, CSS, and JavaScript
development, let’s learn how the experts (and the lazy!) do it.

Uploading each changed file to CouchDB via Futon would get tedious
quick. Alternatively, you could download the entire design document as
JSON, and edit that JSON in your editor... but keeping track of proper
JSON escaping and formattng is a task better done by a machine.

Back in the early days of CouchDB, I solved this problem with a Ruby
script that would update my map and reduce function from a folder. This
way I could open the folder in TextMate, and get all the proper
JavaScript syntax highlighting. To deploy the changes I’d run the Ruby
script, and CouchDB would have my new Map Reduce views.

That would have been the end of the story, except that for some reason,
many people had boatloads of trouble installing the Ruby script. I may
have been suffering from a bit of “grass is always greener,” because my
reaction was to port the Ruby stuff to Python (with a little help from
my friends), which I thought would have a cleaner install story. (It
almost does!)

Since then the Python CouchApp
script [http://github.com/couchapp/couchapp/] has grown in
capability. It boasts the ability to push edits in real
time [http://groups.google.com/group/couchapp/browse_thread/thread/67ccbdcdf9023106],
import vendor modules, and more. Benoit Chesneau keeps it up to date
pretty agressively, it just got some GeoCouch features
today. [http://github.com/couchapp/couchapp/commit/9ff4ec09664a286f0c408ac76eb9c5589a56e208]

So let’s use it!

Installing couchapp.py

There is a lot of documentation already out there about how to install
the CouchApp toolchain. I’ll just link to it. The basic installation
instructions are in the README [http://github.com/couchapp/couchapp]
and in the CouchDB
Book [http://guide.couchdb.org/draft/managing.html]

Here are some hints about installing on
Windows. [http://wiki.apache.org/couchdb/Quirks_on_Windows]

Once you have CouchApp installed, the basic usage is simple. From within
your application directory, issue the following command.

couchapp push . http://myname:mypass@localhost:5984/mydb

Replace myname and mypass with those you set up on your CouchDB
using Futon. If you didn’t setup an admin password on Futon, you should
do that – until you do, your CouchDB can be administered by anyone.
Also, if you are running a CouchDB in the cloud, you’ll need to replace
localhost:5984 with something like mycouch.couchone.com. Also,
of course, mydb should be changed to the name of the database you
want your program to live in.

All this is coverered in great detail in the CouchApp README and the
book, as linked above.

The Standard Library

We’ve made it nearly to the end of this post. The last thing to cover
are the various JavaScript libraries for making CouchApps. I won’t try
to document them, just name them, and say a little about their purpose.

I have a mental plan to clean up and consolidate some of these
libraries, so they are more modular. This should make it so that
CouchApp code loads faster, among other things.

The jQuery CouchDB Client API

We already used
jquery.couch.js [http://daleharvey.github.com/jquery.couch.js-docs/symbols/index.html]
in the Tiny CouchApp example HTML above. This is the basic CouchDB
library for jQuery. It handles things like saveDoc and openDoc, view
queries, replication requests, etc. Essentially it wraps the CouchDB API
in Ajaxy goodness. This library ships as part of CouchDB, as it is used
by Futon.

The CouchApp Code Loader

The CouchApp toolchain ships with
jquery.couch.app.js [http://github.com/couchapp/couchapp/blob/master/vendor/_attachments/jquery.couch.app.js],
which is tasked with one job – loading your application code into the
page. This CouchApp jQuery plugin loads your design document (the JSON
saved as a result of a couchapp push command), so that the browser
has access to your view definitions, show and list functions, etc. It is
invoked like so:

$.couch.app(function(app){
 // app.db is your jquery.couch.js object
 // app.require("lib/foo") gives you access to libraries
});

Essentially, all this function does, is inspect the page you are on,
determine how to load the design document, load it, and gives you an
object that references it and allows you to require libraries from it.
(There is some legacy featuritis in there, but I’m working to remove
that.)

Examples

There is a List of CouchApps.

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

 	Introduction

CouchApp Development Tools

To develop a CouchApp, you will need a way to get your javascript,
html and other resources onto your CouchDB instance.
Typically this is done with a CouchApp command line tool
that maps application assets and CouchDB views, lists, shows,
etc into one or more Design Documents.

	The CouchApp Filesystem Mapping - couchapp.py
and erica [https://github.com/benoitc/erica] (mentioned below) implement a consistent
filesystem-to-design-document mapping

Note

The original CouchApp command line tools were created in 2008 / 2009 by
@benoitc and @jchris. They still work, and have been feature complete
for a long time. couchapp has been replaced and is compatible with the
old couchapp tool.

cURL

The simplest way to develop a couchapp would be to use curl from the
command line.

CouchApp command line tool

The CouchApp command line tool is used to
generate code templates in your application and to push your changes to
an instance of CouchDB, among other things. Here is how to get started
with the CouchApp command line tool:

	Installing couchapp

	Couchapp configuration

	The couchapp command line tool

	Extending the couchapp command line tool

	Using couchapp with multiple design documents

Note

There can be confusion with the term CouchApp because it can refer to
this tool, named CouchApp, or a general application served from
CouchDB. This is probably due to the fact that the CouchApp command line
tool, as known as couchapp.py , was the first full way of developing a
CouchApp.

node.couchapp.js [https://github.com/mikeal/node.couchapp.js]

	http://japhr.blogspot.com/2010/04/quick-intro-to-nodecouchappjs.html

This is an alternative tooling to the Python couchapp utility that is
instead written in Node.js. It uses a much simpler folder structure than
it’s Python counterpart and is a generally more minimalist/simplified
way of writing couchapps. Note that you cannot use Python couchapp to
push couchapps written using node.couchapp.js [https://github.com/mikeal/node.couchapp.js] into CouchDB and vice versa.

erica [https://github.com/benoitc/erica]

erica [https://github.com/benoitc/erica] is an Erlang-based command line tool that is compatible with
the Python and Node.js CouchApp tools.

Kanso [http://kan.so/]

A comprehensive, framework-agnostic build tool for CouchApps.

The Kanso [http://kan.so/] command line tool can build projects designed for
node.couchapp.js, or even the Python couchapp tool, while providing many
other options for building your app. These build steps and other code
can be shared using the online package
repository [http://kan.so/packages]. Compiling coffee-script, .less
CSS templates etc. is as easy as including the relevant package.

NPM for CouchApps

Kanso [http://kan.so/] also lets you merge design docs together, which allows reusable
components built with any of the available couchapp tools. The Kanso [http://kan.so/]
tool can help you manage dependencies and share code between projects,
as well as providing a library of JavaScript modules for use with
CouchDB.

soca [https://github.com/quirkey/soca]

soca [https://github.com/quirkey/soca] is a command line tool written in ruby for building and pushing
couchapps. It is similar to the canonical couchapp python tool, with a
number of key differences:

	local directories do not have to map 1-1 to the design docs directory

	lifecycle management & deployment hooks for easily adding or
modifying the design document with ruby tools or plugins.

	architected around using Sammy.js, instead of Evently, which is
bundled with the python tool. Sammy.js is a Sinatra inspired
browser-side RESTframework which is used by default.

Unlike a traditional couchapp, a soca [https://github.com/quirkey/soca] couchapp is one way - your source
directory structure is actually ‘compiled’ into into the couchapp
_design document format.

Compile time plugins:

	Compass

	CoffeeScript

	Mustache

	JavaScript bundling for CouchDB and the browser

Reupholster [http://reupholster.iriscouch.com/reupholster/_design/app/index.html]

Reupholster [http://reupholster.iriscouch.com/reupholster/_design/app/index.html] is geared for CouchApp beginners and simple CouchApps.
What Reupholster [http://reupholster.iriscouch.com/reupholster/_design/app/index.html] does is allows you to experience writing a CouchApp as fast
as possible, with very little learning curve. It just feels like you are
editing a normal web project.

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

1. Installation

The newest install instructions are always in the
README [https://github.com/couchapp/couchapp/blob/master/README.rst]

In case the below is not updated, check out the release section [https://github.com/couchapp/couchapp/releases] in GitHub.

Requirements

	Python 2.x >= 2.6 (Python 3.x will be supported soon)

	the header files of the Python version that is used, which are
included e.g. in the according development package python-dev
(may have a different name depending on your system)

Installing on all UNIXs

To install couchapp using easy_install you must make sure you have a
recent version of distribute installed:

$ curl -O http://python-distribute.org/distribute_setup.py
$ sudo python distribute_setup.py
$ sudo easy_install pip

To install or upgrade to the latest released version of couchapp:

$ sudo pip install couchapp
$ sudo pip install --upgrade couchapp

To install/upgrade development version:

$ sudo pip install git+http://github.com/couchapp/couchapp.git#egg=Couchapp

Installing in a sandboxed environnement

If you want to work in a sandboxed environnement which is recommended if
you don’t want to not pollute your system, you can use
virtualenv [http://pypi.python.org/pypi/virtualenv] :

$ curl -O http://python-distribute.org/distribute_setup.py
$ sudo python distribute_setup.py
$ easy_install pip
$ pip install virtualenv

Then to install couchapp :

$ pip -E couchapp_env install couchapp

This command create a sandboxed environment in couchapp_env folder.
To activate and work in this environment:

$ cd couchapp_env && . ./bin/activate

Then you can work on your couchapps. I usually have a couchapps
folder in couchapp_env where I put my couchapps.

Installing on Mac OS X

Warning

This section is out-of-date.
We need you help for testing on newer OSX with newer couchapp.py

Using CouchApp Standalone executable

Download
couchapp-1.0.0-macosx.zip [https://github.com/downloads/couchapp/couchapp/couchapp-1.0.0-macosx.zip]
on Github [http://github.com/] then double-click on the installer.

Using Homebrew

To install easily couchapp on Mac OS X, it may be easier to use
Homebrew [http://github.com/mxcl/homebrewbrew] to install pip.

Once you installed
Homebrew [http://wiki.github.com/mxcl/homebrew/installation], do:

$ brew install pip
$ env ARCHFLAGS="-arch i386 -arch x86_64" pip install couchapp

Installing on Ubuntu

Warning

Our PPA is out-of-date.
We need your help for upgrading the packages.

If you use Ubuntu [http://www.ubuntu.com/], you can update your
system with packages from our PPA by adding ppa:couchapp/couchapp to
your system’s Software Sources.

Follow instructions
here [https://launchpad.net/~couchapp/+archive/couchapp].

Installing on Windows

There are currently 2 methods to install on windows:

	Standalone Executable
1.0.2 [https://github.com/couchapp/couchapp/releases/download/1.0.2/couchapp-1.0.2-win32.exe]
Does not require Python

	Python installer for Python 2.7
Requires Python

Previous Release

Please check out both release section [https://github.com/couchapp/couchapp/releases] and
download section [https://github.com/couchapp/couchapp/downloads]
in GitHub.

Note that the download section in GitHub is deprecated [https://github.com/blog/1302-goodbye-uploads].

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

2. Getting Started

In this tutorial you will learn how to create your first CouchApp
(embedded applications in CouchDB [http://couchdb.apache.org]) using the couchapp script.

Generate your application

couchapp provides you the generate command to initialize your first
CouchApp. It will create an application skeleton by generating needed
folders and files to start. Run:

$ couchapp generate helloworld

[image: couchapp generate helloworld]

$ couchapp generate

Create a show function

To display our hello we will create a show function.

$ cd helloworld/
$ couchapp generate show hello

Here the generate command create a file named hello.js in the folder
shows. The content of this file is:

function(doc, req) {

}

which is default template for show functions.

For now we only want to display the string “Hello World”. Edit your show
function like this:

function(doc, req) {
 return "Hello World";
}

Push your CouchApp

Now that we have created our basic application, it’s time to push it
to our CouchDB server. Our CouchDB server is at the url
http://127.0.0.1:5984 and we want to push our app in the database
testdb:

$ couchapp push testsb

[image: couchapp push testdb]

$ couchapp push

Go on http://127.0.0.1:5984/testdb/_design/helloworld/index.html,
you will see:

[image: CouchApp hello world]

CouchApp hello world

Clone your CouchApp

So your friend just pushed the helloworld app from his computer.
But you want to edit the CouchApp on your own computer.
That’s easy, just clone his application:

$ couchapp clone http://127.0.0.1:5984/testdb/_design/helloworld helloworld

This command fetch the CouchApp helloworld from the remote database
of your friend.

[image: couchapp clone http://127.0.0.1:5984/testdb/_design/helloworld helloworld]

$ couchapp clone

Now you can edit the couchapp on your own computer.

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

CouchApp Command Line Tool

CouchApp is designed to structure standalone CouchDB application
development for maximum application portability.

CouchApp is a set of scripts and a jQuery [http://jquery.com] plugin
designed to bring clarity and order to the freedom of
CouchDB [http://couchdb.org]‘s document-based approach.

	1. Installation
	Requirements

	Installing on all UNIXs

	Installing in a sandboxed environnement

	Installing on Mac OS X

	Installing on Ubuntu

	Installing on Windows

	Previous Release

	2. Getting Started
	Generate your application

	Create a show function

	Push your CouchApp

	Clone your CouchApp

	3. Command Line Usage
	Full command line usage

	Commands

	4. Configuration
	.couchapprc

	~/.couchapp.conf

	~/.couchapp

	.couchappignore

	5. App Template
	~/.couchapp

	Libraries

	6. Extend couchapp
	Extensions

	Hooks

	Vendors handlers

	7. Using CouchApp with Multiple Design Documents

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

1. Installation

The newest install instructions are always in the
README [https://github.com/couchapp/couchapp/blob/master/README.rst]

In case the below is not updated, check out the release section [https://github.com/couchapp/couchapp/releases] in GitHub.

Requirements

	Python 2.x >= 2.6 (Python 3.x will be supported soon)

	the header files of the Python version that is used, which are
included e.g. in the according development package python-dev
(may have a different name depending on your system)

Installing on all UNIXs

To install couchapp using easy_install you must make sure you have a
recent version of distribute installed:

$ curl -O http://python-distribute.org/distribute_setup.py
$ sudo python distribute_setup.py
$ sudo easy_install pip

To install or upgrade to the latest released version of couchapp:

$ sudo pip install couchapp
$ sudo pip install --upgrade couchapp

To install/upgrade development version:

$ sudo pip install git+http://github.com/couchapp/couchapp.git#egg=Couchapp

Installing in a sandboxed environnement

If you want to work in a sandboxed environnement which is recommended if
you don’t want to not pollute your system, you can use
virtualenv [http://pypi.python.org/pypi/virtualenv] :

$ curl -O http://python-distribute.org/distribute_setup.py
$ sudo python distribute_setup.py
$ easy_install pip
$ pip install virtualenv

Then to install couchapp :

$ pip -E couchapp_env install couchapp

This command create a sandboxed environment in couchapp_env folder.
To activate and work in this environment:

$ cd couchapp_env && . ./bin/activate

Then you can work on your couchapps. I usually have a couchapps
folder in couchapp_env where I put my couchapps.

Installing on Mac OS X

Warning

This section is out-of-date.
We need you help for testing on newer OSX with newer couchapp.py

Using CouchApp Standalone executable

Download
couchapp-1.0.0-macosx.zip [https://github.com/downloads/couchapp/couchapp/couchapp-1.0.0-macosx.zip]
on Github [http://github.com/] then double-click on the installer.

Using Homebrew

To install easily couchapp on Mac OS X, it may be easier to use
Homebrew [http://github.com/mxcl/homebrewbrew] to install pip.

Once you installed
Homebrew [http://wiki.github.com/mxcl/homebrew/installation], do:

$ brew install pip
$ env ARCHFLAGS="-arch i386 -arch x86_64" pip install couchapp

Installing on Ubuntu

Warning

Our PPA is out-of-date.
We need your help for upgrading the packages.

If you use Ubuntu [http://www.ubuntu.com/], you can update your
system with packages from our PPA by adding ppa:couchapp/couchapp to
your system’s Software Sources.

Follow instructions
here [https://launchpad.net/~couchapp/+archive/couchapp].

Installing on Windows

There are currently 2 methods to install on windows:

	Standalone Executable
1.0.2 [https://github.com/couchapp/couchapp/releases/download/1.0.2/couchapp-1.0.2-win32.exe]
Does not require Python

	Python installer for Python 2.7
Requires Python

Previous Release

Please check out both release section [https://github.com/couchapp/couchapp/releases] and
download section [https://github.com/couchapp/couchapp/downloads]
in GitHub.

Note that the download section in GitHub is deprecated [https://github.com/blog/1302-goodbye-uploads].

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

2. Getting Started

In this tutorial you will learn how to create your first CouchApp
(embedded applications in CouchDB [http://couchdb.apache.org]) using the couchapp script.

Generate your application

couchapp provides you the generate command to initialize your first
CouchApp. It will create an application skeleton by generating needed
folders and files to start. Run:

$ couchapp generate helloworld

[image: couchapp generate helloworld]

$ couchapp generate

Create a show function

To display our hello we will create a show function.

$ cd helloworld/
$ couchapp generate show hello

Here the generate command create a file named hello.js in the folder
shows. The content of this file is:

function(doc, req) {

}

which is default template for show functions.

For now we only want to display the string “Hello World”. Edit your show
function like this:

function(doc, req) {
 return "Hello World";
}

Push your CouchApp

Now that we have created our basic application, it’s time to push it
to our CouchDB server. Our CouchDB server is at the url
http://127.0.0.1:5984 and we want to push our app in the database
testdb:

$ couchapp push testsb

[image: couchapp push testdb]

$ couchapp push

Go on http://127.0.0.1:5984/testdb/_design/helloworld/index.html,
you will see:

[image: CouchApp hello world]

CouchApp hello world

Clone your CouchApp

So your friend just pushed the helloworld app from his computer.
But you want to edit the CouchApp on your own computer.
That’s easy, just clone his application:

$ couchapp clone http://127.0.0.1:5984/testdb/_design/helloworld helloworld

This command fetch the CouchApp helloworld from the remote database
of your friend.

[image: couchapp clone http://127.0.0.1:5984/testdb/_design/helloworld helloworld]

$ couchapp clone

Now you can edit the couchapp on your own computer.

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

 	CouchApp Command Line Tool

3. Command Line Usage

Warning

There are many undocumented commands.
We need your help!

Full command line usage

Usage: couchapp [OPTIONS] [CMD] [CMDOPTIONS] [ARGS,...]

Options:
 -d, --debug
 -h, --help
 --version
 -v, --verbose
 -q, --quiet

Commands:
 autopush [OPTION]... [COUCHAPPDIR] DEST
 --no-atomic send attachments one by one
 --update-delay [VAL] time between each update
 browse [COUCHAPPDIR] DEST
 clone [OPTION]...[-r REV] SOURCE [COUCHAPPDIR]
 -r, --rev [VAL] clone specific revision
 generate [OPTION]... [app|view,list,show,filter,function,vendor] [COUCHAPPDIR] NAME
 --template [VAL] template name
 help
 init [COUCHAPPDIR]
 push [OPTION]... [COUCHAPPDIR] DEST
 --no-atomic send attachments one by one
 --export don't do push, just export doc to stdout
 --output [VAL] if export is selected, output to the file
 -b, --browse open the couchapp in the browser
 --force force attachments sending
 --docid [VAL] set docid
 pushapps [OPTION]... SOURCE DEST
 --no-atomic send attachments one by one
 --export don't do push, just export doc to stdout
 --output [VAL] if export is selected, output to the file
 -b, --browse open the couchapp in the browser
 --force force attachments sending
 pushdocs [OPTION]... SOURCE DEST
 --no-atomic send attachments one by one
 --export don't do push, just export doc to stdout
 --output [VAL] if export is selected, output to the file
 -b, --browse open the couchapp in the browser
 --force force attachments sending
 startapp [COUCHAPPDIR] NAME
 vendor [OPTION]...[-f] install|update [COUCHAPPDIR] SOURCE
 -f, --force force install or update
 version

Commands

generate

Allows you to generate a basic couchapp. It can also
be used to create template of functions. e.g.:

$ couchapp generate myapp
$ cd myapp
$ couchapp generate view someview

init

Initialize a CouchApp. When run in the folder of your
application it create a default .couchapprc file. This file is
needed by couchapp to find your application. Use this command when
you clone your application from an external repository (git, hg):

$ cd mycouchapp
$ couchapp init

push

Push a couchapp to one or more CouchDB [http://couchdb.apache.org] server.

$ cd mycouchapp
$ couchapp push http://someserver:port/mydb

	--no-atomic option allows you to send attachments one by one.
By default all attachments are sent inline.

	--export options allows you to get the JSON document created.
Combined with --output, you can save the result in a file.

	--force: force attachment sending

	--docid option allows you to set a custom docid for this
couchapp

pushapps

Like push but on a folder containing couchapps.
It allows you to send multiple couchapps at once.

$ ls somedir/
app1/ app2/ app3/
$ couchapp pushapps somedir/ http://localhost:5984/mydb

pushdocs

Like pushapps but for docs. It allows you to send a
folder containing simple document. With this command you can populate
your CouchDB [http://couchdb.apache.org] with documents. Anotther way to do it is to create a
_docs folder at the top of your couchapp folder.

startapp

It’s an alias of generate app NAME, e.g.:

$ couchapp startapp myapp

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

 	CouchApp Command Line Tool

4. Configuration

.couchapprc

Every CouchApp MUST have a .couchapprc file in the application directory.
This file is a JSON object which contains configuration
parameters that the command-line app uses to build and push your CouchApp.
The couchapp generate and couchapp init commands
create a default version of this file for you.

The most common use for the .couchapprc file is to specify one or
more CouchDB databases to use as the destination for the
couchapp push command. Destination databases are listed under the
env key of the .couchapprc file as follows:

{
 "env" : {
 "default" : {
 "db" : "http://localhost:5984/mydb"
 },
 "prod" : {
 "db" : "http://admin:password@myhost.com/mydb"
 }
 }
}

In this example, two environments are specified: default, which pushes
to a local CouchDB instance without any authentication, and prod,
which pushes to a remote CouchDB that requires authentication.
Once these sections are defined in .couchapprc, you can push to your
local CouchDB by running couchapp push (the environment name
default is used when no environment is specified) and push to the
remote machine using couchapp push prod. For a more complete
discussion of the env section of the .couchapprc file, see the
Managing Design
Documents [http://guide.couchdb.org/draft/managing.html#configuring]
chapter of CouchDB: The Definitive Guide.

The .couchapprc file is also used to configure extensions to the
couchapp tool. See the Extend couchapp page for more details.

~/.couchapp.conf

One drawback to declaring environments in the .couchapprc file is
that any usernames and passwords required to push documents are stored
in that file. If you are using source control for your CouchApp, then
those authentication credentials are checked in to your (possibly
public) source control server. To avoid this problem, the couchapp
tool can also read environment configurations from a file stored in your
home directory named .couchapp.conf. This file has the same syntax
as .couchapprc but has the advantage of being outside of the source
tree, so sensitive login information can be protected. If you already
have a working .couchapprc file, simply move it to
~/.couchapp.conf and run couchapp init to generate a new, empty
.couchapprc file inside your CouchApp directory. If you don’t have a
.couchapprc file, couchapp will display the dreaded
couchapp error: You aren't in a couchapp message.

~/.couchapp

Please see App Template

.couchappignore

A .couchappignore file specifies intentionally untracked files that
couchapp should ignore. It’s a simple json file containing an array of
regexps that will be use to ignore file.

For example:

[
 ".*\\.swp$",
 ".*~$"
]

will ignore all files ending in .swp and ~. Be sure to leave out the
final , in the list.

You can check if couchapp really ignores the files by specifying the -v
option:

couchapp -v push

Note

Windows doesn’t like files that only have an extension,
so creating the .couchappignore file will be a challenge in windows.
Possible solutions to creating this file are:

Using cygwin, type: touch .couchappignore cd /to/couchappand then
notepad .couchappignore

TODO: more information about other templates like vendor, view, etc.

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

 	CouchApp Command Line Tool

5. App Template

Most of the time, you will use couchapp generate to create a new
CouchApp with the default directory layout, example functions, and
vendor directories. If you find yourself creating multiple CouchApps
that always contain the same third-party or in-house files and
libraries, you might consider creating a custom app template containing
these files and using the --template option of the generate command
to create your customized CouchApps.

After creating a new couchapp, you will have a project structure that
looks something like this template project [https://github.com/jchris/proto].
The following libraries are included with your new CouchApp by default.

~/.couchapp

Custom templates are stored as subdirectories under the
~/.couchapp/templates directory. The name of the subdirectory is
used in the --template option to specify which template files are
to be used in the couchapp generate command. The default template
name is app, so by creating ~/.couchapp/templates/app and placing
files and directories under that path, you can replace almost all of the
default files created by couchapp generate.

Libraries

CouchDB API jquery.couch.js [https://github.com/apache/couchdb-jquery-couch]

The JQuery library included with CouchDB itself for use by the Futon
admin console is used to interact with couchdb.

Documentation [http://daleharvey.github.io/jquery.couch.js-docs/symbols/]

CouchApp Loader jquery.couch.app.js [https://github.com/couchapp/couchapp/tree/master/couchapp/templates/vendor/couchapp/_attachments]

A utility for loading design document classes into your Javascript
application

Mustache [https://github.com/janl/mustache.js]

A simple template framework

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

 	CouchApp Command Line Tool

6. Extend couchapp

Couchapp can easily be extended using external python modules or
scripts. There are 3 kind of extensions:

	extensions: allows you to add custom commands to couchapp

	hooks: allows you to add actions on pre-/post
(push, clone, pushdocs, pushapps) events.

	vendors handlers: allows you to add support for different sources of
vendor

Extensions

Extensions are eggs or python modules registered in the config file in
extensions member, e.g.:

"extensions": [
 "egg:mymodule#name"
]

Eggs uri are entry points uri starting with egg: prefix.
To just load python module use an uri with the form:
python:mymodule.myextension.

To load eggs add an entry point in couchapp.extension sections. More
info about entry points
here [http://packages.python.org/distribute/pkg_resources.html#entry-points].

An extension is a python module loaded when couchapp start.
You can add custom commands to couchapp via this way.
To add custom commands simply add a dict named cmdtable.
This dict is under the format:

cmdtable = {
 'cmdname': (function, params, 'help string'),
}

params is a list of options that can be used for this function (the
-someoption/–someoption= args):

params = [
 ('short', 'long', default, 'help string'),
]

short is the short option used on command line (ex: -v) long is
the long option (ex: –verbose)

default could be True/False/None/String/Integer

Hooks

Couchapp offers a powerful mechanism to let you perform automated
actions in response of different couchapp events (push, clone, generate,
vendor).

Hooks are eggs or python modules registered in the config file in
hooks member, e.g.:

"hooks": {
 "pre-push": [
 "egg:couchapp#compress"
]
}

Like extennsions egg uri start with egg: prefix and python module with
python:. Entry point are added to couchapp.hook distribution.
Here is the declaration of coupress hook in couchapp setup.py:

setup(
 name = 'Couchapp',
 ...

 entry_points="""
 ...

 [couchapp.hook]
 compress=couchapp.hooks.compress:hook

 ...
 """,

 ...
)

hooks are python functions like this:

def hook(path, hooktype, **kwarg):
 ...

path is the directory of the CouchApp on the filesystem, hooktype is the
name of the event pre-/post-(push|clone|generate|vendor) and kwargs
a list of arguments depending on the event:

	push: dbs: list of Database object

	clone: source: the source of the couchapp to clone

	vendor: source, the uri of vendor, action, could be install
or update.

	generate: None

Have a look in compress hook
source [http://github.com/couchapp/couchapp/tree/master/couchapp/hooks/compress/]
for a complete example.

Vendors handlers

for vendor_uri in self.conf.get('vendors'):
 obj = util.parse_uri(vendor_uri, "couchapp.vendor")
 vendors_list.append(obj)

Vendors handlers are used to manage installation or update of vendors.
Like extensions or hooks vendors handlers are eggs or python modules
registered in config file:

{
 "vendors": [
 "egg:couchapp#git",
 "egg:couchapp#hg",
 "egg:couchapp#couchdb"
]
}

(above is the default). Entry point are added to couchapp.vendor
distribution, e.g.:

setup(
 name = 'Couchapp',
 ...

 entry_points="""
 [couchapp.vendor]
 git=couchapp.vendors.backends.git:GitVendor
 hg=couchapp.vendors.backends.hg:HgVendor
 couchdb=couchapp.vendors.backends.couchdb:CouchdbVendor

 ...
 """,

 ...
)

A vendor is an object inheriting couchapp.vendor.base.BackendVendor
class:

class MyVendor(BackendVendor):
 """ vendor backend interface """
 url = ''
 license = ''
 author = ''
 author_email = ''
 description = ''
 long_description = ''

 scheme = None

 def fetch(url, path, *args, **opts):
 ...

	url:	is the url of the vendor source

	license:	the license of the vendor

	author:	name of author

	author_email:	email of author

	description:	short description of this vendor

	long_descrtiption:

		long description

	scheme:	list of url prefix on which this handler will be use.
(e.g.: [‘git’, ‘git+ssh’] for git://|git/ssh:// urls)

The fetch function take the url given in console, the path of
couchapp.

Here is an example for the default git vendor:

class GitVendor(BackendVendor):
 url = 'http://github.com/couchapp/couchapp'
 author = 'Benoit Chesneau'
 author_email = 'benoitc@e-engura.org'
 description = 'Git vendor handler'
 long_description = """couchapp vendor install|update from git::

 git://somerepo.git (use git+ssh:// for ssh repos)
 """

 scheme = ['git', 'git+ssh']

 def fetch(self, url, path, *args, **opts):

Full source is on the git
repo [http://github.com/couchapp/couchapp/blob/master/couchapp/vendors/backends/git.py].

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

 	CouchApp Command Line Tool

7. Using CouchApp with Multiple Design Documents

Here is what I did to use couchapp with multiple design documents.
I want to setup a project for a new database test6 with a design doc
called design_doc1.

Make sure couchdb and couchapp are installed and that couchdb is
started.

First check that test6 doesn’t exist:

$ curl http://127.0.0.1:5984/test6
{"error":"not_found","reason":"no_db_file"}

OK. That was expected.

Generate a new CouchApp:

$ couchapp generate test6
$ cd test6
$ ls
_attachments evently language shows vendor
couchapp.json _id lists updates views

Now edit .couchapprc as follows so it looks like

{ "env":
 { "default":
 { "db":"http://127.0.0.1:5984/test6" }
 }
}

Note

It looks like couchapp doesn’t pick up the default db in what
follows when I do couchapp push

Make a directory for design documents:

$ mkdir _design

Make a directory for design_doc1

$ mkdir _design/design_doc1

move the design doc files created with couchapp generate to the
design_doc1 directory:

$ mv _attachments evently lists shows updates vendor views ./_design/design_doc1

review the directory structure

$ ls _design/design_doc1

_attachments evently lists shows updates vendor views

Now push design_doc1.
Note that I have to include the url of the database as a parameter.
Couchapp doesn’t seem to pick up the default db
when I push from the _design directory.

http://127.0.0.1:5984/test6 is the url of the new db

$ couchapp push _design/design_doc1 http://127.0.0.1:5984/test6
2010-08-23 15:47:45 [INFO] Visit your CouchApp here:
http://127.0.0.1:5984/test6/_design/design_doc1/index.html

Now check to see if db test6 was created:

$ curl http://127.0.0.1:5984/test6
{"db_name":"test6","doc_count":1,"doc_del_count":0,"update_seq":1,"purge_seq":0,"compact_running":false,"disk_size":106585,"instance_start_time":"1282603665650439","disk_format_version":5}

Now go into a browser and take a look at the test6 db

http://127.0.0.1:5984/_utils/database.html?test6

You should see _design/design_doc1 listed on the html page.
That’s good, it means that design_doc1 was created.

Take a look at design_doc1 in the futon web admin.
Open this URL in your browser:

http://127.0.0.1:5984/_utils/document.html?test6/_design/design_doc1

You should see a nice listing of the design_doc1.
Try opening the index page in your browser:

http://127.0.0.1:5984/_utils/document.html?test6/_design/design_doc1/index.html

This should serve up index.html from the _attachments subdirectory
test6/_design/design_doc1/_attachments/index.html.

Couchapp generate had created a sample view called recent-items.
Try querying it:

$ curl http://127.0.0.1:5984/test6/_design/design_doc1/_view/recent-items
{"total_rows":0,"offset":0,"rows":[]}

That’s it. Multiple design can be used to create different interfaces
for users with different roles. For example, consider some data and the
different ways that and admin versus a regular user interacting with it.

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

JavaScript Application Programming

All application logic in a couchapp is provided by JavaScript.
There is a library called jquery.couch.js [https://github.com/apache/couchdb/blob/trunk/share/www/script/jquery.couch.js] that is distributed
with every CouchDB installation.
Here is the documentation for jquery.couch.js [http://daleharvey.github.com/jquery.couch.js-docs/symbols/index.html]

	Using backbone.js with CouchApp
	An example use case

Also check out the List of CouchApps.

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

 	JavaScript Application Programming

Using backbone.js with CouchApp

Backbone.js [http://backbonejs.org/] is minimalist mvc framework for JavaScript, written by
Jeremy Ashkenas, the author of coffee script. Backbone is a good choice
for creating larger CouchApps, as an alternative to Evently. A robust
backbone-couchdb connector that supports realtime updates via the
_changes feed is supported by Jan Monschke.

See this
introduction [http://janmonschke.posterous.com/backbone-couchdb-give-your-couchapp-some-back]
to CouchApp with backbone.js [http://backbonejs.org/] by Jan.

Extended version of backbone [http://backbonejs.org/] couch connector (with fixing some
issues, extending functionality) is available here:

https://github.com/andrzejsliwa/backbone-couch

An example use case

https://github.com/andrzejsliwa/couch-watch

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

The Garden

Warning

The original database of garden was gone.
Some legacy resources are
here [http://couchapp.iriscouch.com/garden/_design/garden/index.html].

The CouchApp
Garden [http://couchapp.org/garden/_design/garden/index.html] is a
CouchApp designed to make sharing other CouchApps easy. Once you have
the Garden installed on your CouchDB, you can use it to install other
CouchApps.

The basics

Currently, the Garden needs a lot of work, but the basic ideas are
there. Essentially, it can copy design documents from your other
databases, into the Garden database. As it copies them, it renames them
so that they don’t have ids that start with _design. This means they
can be replicated around without the replicator having to run with admin
privileges. Also, the apps don’t run code when they are just sitting in
the Garden.

Once you have a local Garden database, you can install apps from it,
into databases on your CouchDB. The garden document will be copied to
the target database, as a design document again, and there will be a
link to visit that application.

Sharing your app

To add your app to the Garden, install the Garden locally, and use its
import link, to add the app to your local garden database. Then
replicate that database to http://couchapp.org/garden, and check out the
updated Garden [http://couchapp.org/garden/_design/garden/index.html].

Contributing to the Garden

The Garden code is on Github [http://github.com/jchris/garden],
please fork and contribute.

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

CouchApps and DesktopCouch

In version 0.7, couchapp.py has a new feature allowing you
to push, clone and browse CouchApps in the local CouchDB installed with
desktopcouch [http://freedesktop.org/wiki/Specifications/desktopcouch],
so users of linux distributions where desktopcouch has been ported
won’t have to install another CouchDB to test and will be able to pair
it with other desktop.

How it works?

To push to your local couchdb installed with desktopcouch:

couchapp push desktopcouch://testdb

To clone:

couchapp clone desktopcouch://testdb/_design/test test1

To browse and use your application:

couchapp browse . desktopcouch://mydb

and with push option :

couchapp push --browse . desktopcouch://mydb

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

List of CouchApps

Please add links to CouchApps
(alphabetical order will help avoid duplicates in the long run).
You may also be interested in the CouchApp Garden.

Afghan War Diary

A GeoCouch app that provides a browseable map of entries from the
Wikileaks Afghan Diaries.

Code [http://github.com/benoitc/afgwardiary]

BlueInk

The beginnings of a conversion of the BlueInk
CMS [http://blueinkcms.com/] to a CouchApp. Currently, it can serve
as a view-engine for web pages wearing Mustache [http://mustache.github.io/] templates.

Code [http://github.com/bigbluehat/blueink]

Bookkeeping

A little CouchApp that helps visualizing expenses for my household.
Currently in German only. I am working on a branch that uses views and
_changes instead of a pure client side implementation with jquery.

Code [http://github.com/ckeen/bookkeeping]

Boom Amazing

Presentation software with a twist.
Uses SVG and pan and zoom.
Based on Sammy.js [http://code.quirkey.com/sammy/].

Code [http://github.com/langalex/boom_amazing]

Brunch-Colors

Brunch-Colors is a simple, addictive color-matching game that was made
with Brunch [https://github.com/brunch/brunch] that utilizes such
tools as Backbone.js [http://backbonejs.org/], eco and stylus.

Play it here [http://brunch-colors.com/]

Code [https://github.com/janmonschke/Brunch-colors]

Costco

A small UI for bulk editing CouchDB documents.

Code [http://github.com/harthur/costco]

CouchCrawler

Spiders the web into CouchDB.
Uses a Python script for web spidering.
Read the blog post
here [http://syntacticbayleaves.com/2010/01/17/announcing-couch-crawler-a-couchdb-search-enginecrawler/]

Code [http://github.com/clofresh/couch-crawler]

CouchWatch

Simple logs watcher with realtime view and simple searching. For using
witch Rails and JavaScript logger. Written in Backbone.js [http://backbonejs.org/]

Code [https://github.com/andrzejsliwa/couch-watch]

CouchDB Contact Form

Simple Contact Form CouchApp for CouchDB. Includes simple mail spooler.

Code [http://github.com/jasondavies/couchdb-contact-form]

CouchDB Projector

For doing presentations.

Code [http://github.com/phred/couchdb-projector]

CouchLog

Application Logging tool. Uses a CouchDB backend with a CouchApp-based
interface for sorting through log entries and troubleshooting/debugging
applications. Leverages schema-less approach to allow log entries to
contain structured meta-information to aid in troubleshooting

Code [http://github.com/desdev/CouchLog]

csv2couchdb

small app to populate couchdb using data from CSV files

Code [https://github.com/Mango-information-systems/csv2couchdb]

Dimensional Drawing

Collaborative 2.5D drawing space.

Code [https://github.com/clehner/dimensional-drawing]

Demo [http://www.dimensionaldrawing.com/]

Focus

A TODO tracker that replicates. Run it on your phone, run it on your
server, run it on your laptop. Keep them synchronized. Never forget to
do that important thing!

Code [http://github.com/jchris/Focus]

Deployments:

	Demo [http://couchapp.org/focus/_design/focus/index.html]

Food Cart Pages

A catalog of all the food carts in Portland.

Deployments:

	http://foodcartpages.com [http://foodcartpages.com/]

HejHej

A CouchApp for language learning. Lets you train vocabularies and solve
different kinds of games/tests. Has Cucumber tests.

Code [http://github.com/langalex/hejhej]

Hub List

Open source GTD style productivity app [http://hublistapp.com/].
Manage your tasks from bug trackers, pm tools and other online todo
lists all in one place. Built with Ext JS 4.

Code [https://github.com/rawberg/Hub-List_GTD-Productivity]

IrcLog CouchApp

A couchapp to view irc logs stored in CouchDB.

The irclogs can be stored by gdamjan’s ircbot [https://github.com/gdamjan/irclog-couchapp] and its
couchdb loging plugin [https://github.com/gdamjan/erlang-irc-bot-skopjehacklab/blob/master/src/ircbot_plugin_couch_log.erl] .

Code [https://github.com/gdamjan/irclog-couchapp]

Li.Couch

Open source LIst notes [http://li.iriscouch.com/]. Easy track of
your items. Built with Knockout.js.

Code [http://github.com/avalez/li.couch]

Demo [http://li.iriscouch.com/]

MapChat

A real time chat app on a Google Map. Points on a map as a chat rooms.

Code [http://github.com/mapchat/mapchat]

Demo [http://mapchat.me/]

Microanalytics

Personal hackable web-analytics.

Code [https://github.com/fiatjaf/microanalytics]

Python command-line client [https://github.com/fiatjaf/microanalytics-cli]

Modern Forum

A new project aiming to bring real-time, CouchDB-powered forums to the
masses.

Code [https://github.com/andrewrabon/modern-forum]

Monocles (ex-CouchAppSpora)

diaspora... as a couchapp! in pure javascript and fully OStatus
compliant (almost)

Code and more info [http://github.com/maxogden/couchappspora]
Demo [http://monocl.es/]

MTG Pricing CouchApp

A mobile-centric app to get the pricing information for Magic: The
Gathering cards quickly and easily.

Code [http://github.com/Madisonw/MTG-Pricing-Couchapp]

Mytweets

A personal Twitter archive.

Deployments:

	@yssk22 [http://www.yssk22.info/relax/_design/mytweets/_list/timeline/by_date?descending=true]

Nymphormation

A social link sharing tool.

Code [http://bitbucket.org/benoitc/nymphormation/]

Deployments:

	Nymphormation [http://nymphormation.org/n/_design/nymphormation/_list/links/news?limit=11&descending=true]

Pages

A Markdown wiki. This was the wiki used to create this documentation
originally.

	Install Pages

Code [http://github.com/couchone/pages]

Deployments:

	CouchApp [http://wiki.couchapp.org/]

Processing JS Studio

Web-based application to store Processing JS sketches and renderings.
Storage and service provided by CouchDB via CouchApp.

Code [http://github.com/hpoydar/processing-js-studio]

Proto

A basic CouchApp for inputing info from a form, and listing it in real
time. This is the starting point for many other applications, as well as
the Evently Guided Hack Video
Tutorial [http://www.youtube.com/watch?v=Xk5gaUURdJI].

Code [http://github.com/jchris/proto]

Or run couchapp generate foo to get your own version, ready for
hacking.

Deployments:

	jChris [http://jchris.iriscouch.com/proto/_design/proto/index.html]

	Jan [http://jan.iriscouch.com/proto/_design/proto/index.html]

	Goto [http://goto.iriscouch.com/test/_design/proto/index.html]

Random Lecture!

A simple Sammy-On-CouchApp (soca) app that plays a random technical
lecture or tech talk.

	Demo [http://randomlecture.iriscouch.com/lectures/_design/lectures/index.html]

	Code [http://github.com/maxogden/random-lecture]

	List of all lectures [http://github.com/maxogden/tech-talk-urls]

Sales Stats

A simple CouchApp Demo that displays sales statistics as a bar graph. It
uses the _changes API together with Evently, so that the sales
statistics are updated live (in near realtime).

Code [http://github.com/KlausTrainer/sales_stats]

Demo [http://mambofulani.iriscouch.com/sales_stats/_design/sales_stats/index.html]

Scrapboard

A decentralized implementation of the old Orkut scrapbook.

Code [https://github.com/fiatjaf/scrapboard]

Skim - Simple knowledgebase for insightful metabolomics

The vision behind Skim is to develop a tool that can help analyze vast
quantities of peer reviewed and community-provided information on
metabolites, biochemical reactions and pathways. Heavily under
development - may be unstable from time to time.

Code [https://github.com/kbhalerao/Social-Metabolomics]

Demo [http://abe-bhaleraolab.age.uiuc.edu/skim]

Sleepcam

Whenever a user’s computer wakes from sleep, the software takes a
picture with their webcam and posts it to their profile on sleepcam.org.
Users can like and comment on eachother’s pictures.

Code [https://github.com/clehner/sleepcam]

Demo [http://sleepcam.org/]

Sofa

Standalone CouchDB Blog with tagging, Atom feeds, and gravatar comments
, used by the O’Reilly CouchDB book.

Code [http://github.com/jchris/sofa]

Deployments:

	Daytime Running Lights [http://jchrisa.net/]

	Chewbranca [http://chewbranca.com/]

	Plok
Light [http://raw.jan.io/plok/_design/sofa/_list/index/recent-posts?descending=true&limit=5]

	Blog Bleeds [http://blog.bleeds.info/]

Snippets

A Couchdb snippets app with a Couchfuse backend.

Code [http://github.com/narkisr/snippet-app]

Swinger

A presentation engine. Like Keynote in the browser, but simpler.
Uses Sammy.js [http://code.quirkey.com/sammy/].

Code [http://github.com/quirkey/swinger]

Deployments:

	http://swinger.quirkey.com [http://swinger.quirkey.com/]

TapirWiki

A wiki couchapp. Uses textile as the markup language and has a few
macros, templates and support for attachments.

Code [http://code.google.com/p/tapirwiki/]

Taskr

A task tracker. This one got deprecated by Focus. It’s got some cool
features so it’s worth looking at if you are building something similar.

Code [http://github.com/jchris/taskr]

The Infinite Maze

A collaborative maze drawing app.

Code [https://github.com/clehner/infinite-maze/]

Demo [http://www.theinfinitemaze.com/]

Toast

A real time chat app. One of the first demos of the _changes API.

Code [http://github.com/jchris/toast]

Demo [http://jchrisa.net/toast/_design/toast/index.html]

Tweet Eater

A Twitter search archive and real time display. Uses a Ruby backend to
import tweets from the streaming API.

Code [http://github.com/doppler/TweetEater]

hckr.it

A Hacker News [http://news.ycombinator.com/] clone
built entirely using CouchDB that can be served as a couchapp.

Code [https://github.com/lmatteis/hckr.it]

Demo [http://www.hckr.it/]

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

 	List of CouchApps

Install Pages

If anyone else has issues understanding this whole vhosts thing i’ll
give a grandma-can-do-it recount here of my troubles.

If you want to set up pages on your machine and you are not very
familiar with what’s what, here it goes:

Get pages from github: http://github.com/couchone/pages

Navigate to your fav directory and do this in the terminal:

git clone git://github.com/couchone/pages.git

Make sure to install couchapp python helper app, i won’t go into the
details, the github instructions are
great [http://wiki.github.com/couchapp/couchapp/manual-2]

Hope you have couchdbx installed on osx or the equivalent on your
favourite dev/production platform

Do this from inside your pages directory:

couchapp init
couchapp push . http://localhost:5984/pages

That will get you the app into your db, nothing new here, the git hub
instructions will tell you the same thing, what got me (besides a bad
commit ;)) is the instruction on
http://blog.couch.io/post/443028592/whats-new-in-apache-couchdb-0-11-part-one-nice-urls

The section about vhosts is a bit ambiguous for those that aren’t in the
know...

The instructions there are as follows:

“Each HTTP 1.1 request includes a mandatory header field Host:
hostname.com with the server name it is trying to reach. You can tell
CouchDB to look for that Host header and redirect all requests that
match to any URL inside CouchDB by adding this to your configuration
file local.ini:

[vhosts]
couch.io = /couchio/_design/app/_rewrite"

Well, what the hell is local.ini?

Who knows, who cares, go to your couchdb app and navigate to the
configuration section.

Go to the bottom of the page and “Add new section”

Type into the 3 fields that popup:

	vhosts

	your-pages-site-name:5984

	/pages/_design/pages/_rewrite

Now go to the terminal and type:

textmate /etc/hosts

(Notice i’m making assumptions here, basically, get to the hosts file
and open it...)

Add:

127.0.0.1 your-pages-site-name

Save, go to a browser type:

your-pages-site-name:5984

Hopefully that worked out OK for you.

See ya!

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

The CouchApp Filesystem Mapping

The couchapp script has a cool way of pushing files to CouchDB’s
design documents. The filesystem
mapping [http://couchdbkit.org/docs/storing_docs_and_designdocs_on_filesystem.html]
is done via the couchdbkit [http://couchdbkit.org/] Python library.

If you have folders like:

myapp/
 views/
 foobar/
 map.js
 reduce.js

It will create a design document like this:

{
 "_id" : "_design/myapp",
 "views" : {
 "foobar" : {
 "map" : "contents of map.js",
 "reduce" : "contents of reduce.js"
 }
 }
}

This is designed to make it so you get proper syntax highlighting in
your text editor.

Complete Filesystem-to-Design Doc Mapping Example

myapp/
 _attachments/
 images/
 logo.png
 _docs/
 sample.json
 doc_needing_encoding/
 _id (the ID for the document as text on the first line of this file)
 title (same as ID, just for the title field. Repeat pattern as needed)
 content.html (HTML content that will be encoded when it's added to the JSON doc)
 lists/
 xml.js
 rewrites.js
 shows/
 preview.js
 xml.js
 updates/
 in-place.js
 views/
 foobar/
 map.js
 reduce.js
 validate_doc_update.js

The _attachments folder will turn each file into an attachment on
the resulting Design Document. The attachments will be named based on
their file path (ex: “image/logo.png”).

The contents of the _docs folder are turned into actual JSON
documents in CouchDB. The contents of the .json files will be input
exactly as they are in the file. The name of the document with be either
the file name or the _id field from the JSON object in that file.

Folders under _docs will be turned into documents with each file in
the folder being a key/value pair in the resulting JSON document. HTML
and XML files (and maybe others?) will be JSON encoded before being
added to the JSON document. An _id file will be used (if present) as
the ID of the new document. Otherwise the folder name will become the
ID.

The rest of the folder structure above will become this JSON Design
Document

{
 "_id" : "_design/myapp",
 "_attachments": {
 "images/logo.png": {
 "content_type": "image/png",
 "revpos": 1,
 "digest": "md5-GDPL+eLwE7kzEDWY7X4KdQ==",
 "length": 886,
 "stub": true
 }
 },
 "lists": {
 "xml": "function..."
 },
 "rewrites": "function...",
 "shows": {
 "preview": "function...",
 "xml": "function..."
 }
 "updates": {
 "in-place": "function..."
 },
 "views": {
 "foobar": {
 "map": "function...",
 "reduce": "function..."
 }
 },
 "validate_doc_update": "function...",
}

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CouchApp 1.0.2 documentation

Contributing

This repository holds all of the code in the project. The Python
couchapp script is the bulk of the repository, but the JavaScript
stuff is in there to.

The jquery.couch.app.js and jquery.evently.js files are both in the
vendor directory [https://github.com/couchapp/couchapp/tree/master/couchapp/templates/vendor/couchapp/_attachments].

If you have a commit to one of the CouchApp files (JavaScript or
otherwise) please let us know on the mailing
list [http://groups.google.com/group/couchapp] as we don’t always get
the messages in our Github inbox.

Also, documentation and blog posting is very much appreciated. Don’t
be afraid to tell us how CouchApp sucks. We want it to be very easy to
use, so giving us a high bar to reach is important.

If you prefer developing mobile apps with Titanium, @pegli maintains a
module which wraps Couchbase Lite for that platform.

If you’ve built a sync powered app and are starting to hit the point
where Apache CouchDB filtered replication doesn’t scale for you, you
might want to check out the Couchbase Sync Gateway which uses the same
sync protocol but is designed to give efficient subsets of a big data
corpus to sync clients. So you can sync to CouchDB or Couchbase Lite
(nee TouchDB).

Or simply use rcouch a custom distribution of Apache CouchDB with a
bunch of new features that offers since a while incremental view changes
(indexed on the disk) and replication support using a view and allows
you to replicate in an efficient manner subsets of your databases.

Last thing, PouchDB is the future of browser based sync apps. It
can sync with the same sync protocols but uses the built-in storage of
HTML5.

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	CouchApp 1.0.2 documentation

Roadmap

Warning

The content is out of date.

Developer Toolchain

couchapp.py

	upload only changed attachments (md5 on attachment stubs?)

	Coverage rate improvement

	Python3 support

Node.js CouchApp Tools

	try Mikeal’s Node.js CouchApp style

JavaScript Libraries

$.couch.app()

	Make this responsible only for loading code from the Couch, and
bootstrapping the CommonJS runtime.

	make $.couch.app.utils a commonjs library.

	move into Apache CouchDB’s share/www/script

RFC: Please Comment

This please suggest anything you think is missing.

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	CouchApp 1.0.2 documentation

Index

 Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

user/videos.html

 Navigation

 		
 index

 		CouchApp 1.0.2 documentation »

Video Tutorials on CouchDB

Warning

The content is out of date

Also check out Relaxed.tv [http://relaxed.tv/] for awesome CouchDB videos!

Get friendly with CouchDB (an intro tutorial)

Interactive HTML5 CouchApps using node.couchapp.js

How to host your website in CouchDB

Eclipse CouchDB

New in 1.0

 © Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_images/gettingstarted03.png
(4)2)= (@) (%) () (33 htp://127.0.0.1:5984testab] _design/helloworid_showrhello 77 v) (3B bespin Q)
)
Hello World

_images/gettingstarted01.png
(couchapp-env) enlil:couchapps benoitcs couchapp generate helloworld
2010-04-01 17:02:3 [INFO] /Users/benostc/work/couchapp-env/couchapps/helloworl generated.
{couchapp-env) enlil: couchapps benoites Ls
friendpaste helloworld sofa swinger test
(couchapp-env) enlil: couchapps benoitcs ls helloworld/
_attachments couchapp.json shows vendor
lists updates views

Tcouchapp-env)enlil: couchapps benoitcs |

_static/up.png

search.html

 Navigation

 		
 index

 		CouchApp 1.0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Various CouchApp Contributors.
 Created using Sphinx 1.3.5.

_static/down.png

_images/gettingstarted04.png
(couchapp-env)enlil: couchapps benoitcs Ls
friendpaste sofa swinger test
/127, 5084/ testdb/_design/helloworld helloworld

(couchapp-env)enlil:couchapps benoitcs couchapp clone http:
2010-04-01 18:56:54 [INFO] http://127.0.0.1:5084/testdb/_design/helloworld cloned in helloworld
(couchapp-env) enlil: couchapps benoitcs

ttachments couchapp.json shows

Zid lists updates.
Tcouchapp-env) enlil: couchapps benoitcs

_static/imgs/gettingstarted03.png
(4)2)= (@) (%) () (33 htp://127.0.0.1:5984testab] _design/helloworid_showrhello 77 v) (3B bespin Q)
)
Hello World

_images/gettingstarted02.png
(couchapp-env)enlilthelloworld benoitcs couchapp push testdb

2010-04-01 18:49:56 [INFO] Visit your CouchApp here:
http://127.0.0.1:5084/testdb/_des ign/helloworld/ index. htl

(couchapp-eny)énlitshelloworta benoites |

_static/imgs/gettingstarted01.png
(couchapp-env) enlil:couchapps benoitcs couchapp generate helloworld
2010-04-01 17:02:3 [INFO] /Users/benostc/work/couchapp-env/couchapps/helloworl generated.
{couchapp-env) enlil: couchapps benoites Ls
friendpaste helloworld sofa swinger test
(couchapp-env) enlil: couchapps benoitcs ls helloworld/
_attachments couchapp.json shows vendor
lists updates views

Tcouchapp-env)enlil: couchapps benoitcs |

_static/imgs/gettingstarted04.png
(couchapp-env)enlil: couchapps benoitcs Ls
friendpaste sofa swinger test
/127, 5084/ testdb/_design/helloworld helloworld

(couchapp-env)enlil:couchapps benoitcs couchapp clone http:
2010-04-01 18:56:54 [INFO] http://127.0.0.1:5084/testdb/_design/helloworld cloned in helloworld
(couchapp-env) enlil: couchapps benoitcs

ttachments couchapp.json shows

Zid lists updates.
Tcouchapp-env) enlil: couchapps benoitcs

_static/imgs/gettingstarted02.png
(couchapp-env)enlilthelloworld benoitcs couchapp push testdb

2010-04-01 18:49:56 [INFO] Visit your CouchApp here:
http://127.0.0.1:5084/testdb/_des ign/helloworld/ index. htl

(couchapp-eny)énlitshelloworta benoites |

